1368
S. K. Chattopadhyay et al. / Tetrahedron Letters 49 (2008) 1365–1369
6. (a) Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org. Chem. 2002,
67, 2424–2428; (b) Tjen, K. C. M. F.; Kinderman, S. S.; Schoemaker,
H. E.; Hiemstra, H.; Rutjes, F. P. J. T. Chem. Commun. 2000, 699–
700; (c) Maison, W.; Adiwidjaja, G. Tetrahedron Lett. 2002, 43, 5957–
5960; (d) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J.
Am. Chem. Soc. 2000, 122, 762–766; (e) Souers, A. J.; Ellman, J. A. J.
Org. Chem. 2000, 65, 1222–1224; (f) Kanayama, T.; Yoshida, K.;
Miyabe, H.; Kimachi, T.; Takemoto, Y. J. Org. Chem. 2003, 68,
6197–6201; (g) Varray, S.; Lazaro, R.; Martinez, J.; Lamaty, F. Eur.
J. Org. Chem. 2002, 2308–2316; (h) Kim, I. S.; Ji, Y. J.; Jung, Y. H.
Tetrahedron Lett. 2006, 47, 7289–7293.
7. (a) Greek, C.; Ferreira, F.; Genet, G. P. Tetrahedron Lett. 1996, 37,
2031–2034; (b) Chenevert, R.; Morin, M.-P. Tetrahedron: Asymmetry
1996, 7, 2161–2164; (c) Meyers, A. G.; Gleason, J. L.; Yoon, T. J. Am.
Chem. Soc. 1995, 117, 8488–8489; (d) Aketa, K.; Terashima, S.;
Yamada, S. Chem. Pharm. Bull. 1976, 24, 621–630.
compounds derived thereof, was followed from extensive
one- and two-dimensional H NMR spectral data of com-
1
pound 30 including homonuclear decoupling experiments.
1
In the H NMR spectrum of compound 30 the H-5 signal
was located at d 5.01 (ddd, J = 11.2, 5.5, 2.7 Hz). One of
the C-6 protons at d 3.81 (dd, J = 13.8, 11.6 Hz) exhibited
a diaxial coupling of ꢀ11 Hz with H-5, while the second H-
6 at d 4.04 (dd, J = 13.3, 5.6 Hz) showed an equatorial–
axial coupling of 5.6 Hz indicating that H-5 was axially ori-
ented. Moreover, H-5 showed an nOe with the axial proton
at C-3 appearing at d 2.11 (ddd, J = 15.0, 6.9, 2.1 Hz).
Other data19 pointed to a distorted chair-like conformation
of 30 in which the lone pair on nitrogen is axially oriented.
Likewise, the isomeric diol 26 was transformed into (2S,
4S,5R)-4,5-dihydroxy-N-tosylpipecolic acid (34) through
intermediates 32 and 33 following an analogous sequence
of events.
In summary, we have developed complementary synthe-
ses of both the enantiomers of N-protected pipecolic acid
and two isomeric 4,5-dihydroxypipecolic acid derivatives
from a common starting material. The methodology is
expected to be applicable for the synthesis of other piperi-
dine derivatives and the compounds prepared may prove to
be of interest.
8. Chattopadhyay, A.; Mamdapur, V. R. J. Org. Chem. 1995, 60, 585–
587.
9. For reviews, see: (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93,
2207–2293; (b) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry
1997, 8, 1895–1946; (c) Thomas, E. J. Chem. Commun. 1997, 411–418;
(d) Block, R. Chem. Rev. 1998, 98, 1407–1438; (e) Kobayashi, S.;
Ishitani, H. Chem. Rev. 1999, 99, 1069–1094.
10. Adams, J. P. J. Chem. Soc., Perkin Trans. 1 2000, 125–139.
11. (a) Chattopadhyay, S. K.; Sarkar, K.; Karmakar, S. Synlett 2005,
2083–2085; (b) Chattopadhyay, S. K.; Sarkar, K.; Thander, L.; Roy,
S. P. Tetrahedron Lett. 2007, 48, 6113–6116.
12. For reviews on RCM, see: (a) Chattopadhyay, S. K.; Karmakar, S.;
Biswas, T.; Majumdar, K. C.; Rahaman, H.; Roy, B. Tetrahedron
2007, 63, 3919–3952; (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117–
7140; (c) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199–2238;
(d) Schrock, R. R. Tetrahedron 1999, 55, 8141–8153; (e) Grubbs, R.
H.; Chang, S. Tetrahedron 1998, 54, 4413–4450; (f) Armstrong, S. K.
J. Chem. Soc., Perkin Trans. 1 1998, 371–388.
13. (a) Barret, G. C. Amino Acids, Peptides and Proteins; Springer:
London, 2001, Vol. 32; (b) Adlington, R. M.; Baldwin, J. E.;
Catterick, D.; Pritchard, G. J.; Tang, L. M. J. Chem. Soc., Perkin
Trans. 1 2000, 303–305; (c) Bunnage, M. E.; Davies, S. G.; Roberts, P.
M.; Smith, A. D.; Withey, J. M. Org. Biomol. Chem. 2004, 2, 2763–
2776; (d) Jones, R. C. F.; Berthelot, D. J. C.; Iley, J. N. Tetrahedron
2001, 57, 6539–6555; (e) Lygo, B.; Slack, D.; Wilson, C. Tetrahedron
Lett. 2005, 46, 6629–6632; (f) Hale, K. J.; Cai, J.; Delisser, V.;
Manaviazar, S.; Peak, S. A.; Bhatia, G. S.; Collins, T. C.; Jogia, N.
Tetrahedron 1996, 52, 1047–1068.
Acknowledgements
We are thankful to DST (Grant No. SR/S1-OC/51/
2005), Government of India, for financial assistance and
CSIR for fellowships to two of us.
References and notes
1. Zacharius, R. M.; Thompson, J. F.; Steward, J. C. J. Am. Chem. Soc.
1952, 74, 2949.
2. (a) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa,
N.; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419–4420; (b) Ireland,
R. E.; Gleason, J. L.; Gegnas, L. D.; Highsmith, T. K. J. Org. Chem.
1996, 61, 6856–6872; (c) Hanessian, S.; Papeo, G.; Angiolini, M.;
Fettis, K.; Baretta, M.; Munro, A. J. Org. Chem. 2003, 68, 7204–7218;
(d) Copeland, T. D.; Wondrak, E. M.; Tozser, J.; Roberts, M. M.;
Oroszlan, S. Biochem. Biophys. Res. Commun. 1990, 169, 310–314; (e)
Beil, E. A. J. Agric. Food Chem. 2003, 51, 2854–2865; (f) Sardine, F.
J.; Rapoport, H. Chem. Rev. 1999, 99, 3329–3366; (g) Flynn, G. A.;
Giroux, E. L.; Dage, R. C. J. Am. Chem. Soc. 1987, 109, 7914–
7915.
3. (a) Cheoug, P. H.-Y.; Zhang, H.; Thayumanavan, R.; Tanaka, F.;
Houk, K. N.; Barbas, C. F., III. Org. Lett. 2006, 8, 811–814; (b)
Aroyan, C. E.; Vasbinder, M. M.; Miller, S. Org. Lett. 2005, 7, 3849–
3851.
4. For a recent review, see: Kadouri-Puchot, C.; Comesse, S. Amino
Acids 2005, 29, 101–130.
5. (a) Fadel, A.; Lahrache, N. J. Org. Chem. 2007, 72, 1780–1784; (b)
Wilkinson, T. J.; Stehle, N. W.; Beak, P. Org. Lett. 2000, 2, 155–158;
(c) Teoh, E.; Campi, E. M.; Jackson, W. R.; Robinson, A. J. Chem.
Commun. 2002, 978–979; (d) Pal, B.; Ikeda, S.; Kominami, H.; Kera,
Y.; Ohtani, B. J. Catal. 2003, 217, 152–159; (e) Rogers, L. M.-A.;
Rouden, J.; Lecomte, L.; Lasne, M.-C. Tetrahedron Lett. 2003, 44,
3047–3050; (f) Calmes, M.; Escale, F.; Rolland, M.; Martinez, J.
Tetrahedron: Asymmetry 2003, 14, 1685–1689.
14. All new compounds reported here gave satisfactory spectroscopic
and/or analytical data. Data for 31: Mp: 197–198 °C. [a]D +54 (c 0.1,
MeOH). IR (KBr): 3347, 1710, 1328, 1159 cmÀ1. 1H NMR (600 MHz,
DMSO-d6): d 7.64 (2H, d, J = 8.1), 7.36 (2H, d, J = 7.8), 4.88 (1H, d,
J = 4.0, D2O exchangeable), 4.32 (1H, d, J = 7.2), 3.67 (1H, quin,
J = 1.8), 3.30 (1H, dd, J = 12.6, 5.6), 3.23 (1H, t, J = 11.0), 3.10 (1H,
ddd, J = 11.0, 5.4, 2.4), 2.34 (3H, s), 2.22 (1H, ddd, J = 14.4, 3.6, 1.8),
1.65 (1H, ddd, J = 13.8, 7.2, 2.4). 13C NMR (75 MHz, DMSO-d6): d
171.7 (s), 142.8 (s), 137.8 (s), 129.6 (d), 128.7 (d), 66.8 (d), 65.7 (d),
50.7 (d), 42.0 (t), 33.1 (t), 20.9 (q). HRMS (TOF MS ES+): obsd
338.0679 (M+Na); calcd 338.0674. Data for 34: Mp: 189–190 °C [a]D
+96 (c 0.12, MeOH). IR (KBr): 3418, 1346, 1727, 1324, 1159 cmÀ1
.
1H NMR (600 MHz, DMSO-d6): d 7.64 (2H, d, J = 7.8), 7.32 (2H, d,
J = 8.1), 4.78 (1H, br s, D2O exchangeable) 4.62 (1H, br s, D2O
exchangeable), 4.37 (1H, d, J = 6.0), 3.65 (1H, br s), 3.63–3.60 (1H,
m), 3.37 (1H, dt, J = 11.0, 3.6), 3.30 (1H, dd, J = 13.8, 1.8), 2.33 (3H,
s), 1.88 (1H, dt, J = 12.6, 6.6), 1.77 (1H, dt, J = 12.6, 3.0). 13C NMR
(75 MHz, CDCl3): d 172.0 (s), 142.7 (s), 137.2 (s), 129.3 (d), 127.1 (d),
66.0 (d), 65.7 (d), 54.8 (d), 47.9 (t), 29.0 (t), 21.0 (q). HRMS (TOF MS
ES+): obsd 338.0670 (M+Na); calcd 338.0674.
15. (a) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J.
Org. Chem. 1981, 46, 3936–3938; (b) Poch, M.; Alcon, M.; Moyano,
A.; Pericas, M. A.; Riera, A. Tetrahedron Lett. 1993, 34, 7781–
7784.