mixture. This was stirred at room temperature for 1 hour prior to
the addition of the allyl bromide (0.51 mmol) with the resulting
chromium(III) allyl solution being stirred for a further 1 hour. The
reaction was initiated by the addition of aldehyde (0.25 mmol)
and chlorotrimethylsilane (64 lL, 0.51 mmol) and stirred under
an atmosphere of nitrogen at room temperature for 16 hours. The
resulting green–brown suspension was quenched with saturated
aqueous NaHCO3 (1 mL) and extracted with Et2O (3 × 1 mL).
The combined organic layers were concentrated in vacuo to give a
green residue. This was flushed through a small silica gel column
(1.5 × 5 cm, pentane–AcOEt 9 : 1) to remove the catalyst and, after
evaporation of the solvent, the reaction products were isolated as
a yellow oil. The % conversion of the reaction was determined
1992, 57, 4306–4309; (e) S. K. Ginotra and V. K. Singh, Org. Biomol.
Chem., 2006, 4, 4370–4374.
3 Y. Jiang, Q. Jiang and X. Zhang, J. Am. Chem. Soc., 1998, 120, 3817–
3818.
4 (a) T. Suzuki, A. Kinoshita, H. Kawada and M. Nakada, Synlett, 2003,
570–572; (b) M. Inoue, T. Suzuki and M. Nakada, J. Am. Chem. Soc.,
2003, 125, 1140–1141; (c) M. Inoue and M. Nakada, Org. Lett., 2004,
6, 2977–2980.
5 (a) H. A. McManus and P. J. Guiry, J. Org. Chem., 2002, 67, 8566–8573;
(b) H. A. McManus, P. G. Cozzi and P. J. Guiry, Adv. Synth. Catal.,
2006, 348, 551–558; (c) G. C. Hargaden, H. A. McManus, P. G. Cozzi
and P. J. Guiry, Org. Biomol. Chem., 2007, 5, 763–766.
6 T. Fujisawa, I. Tsuyoshi and S. Makoto, Tetrahedron Lett., 1995, 36,
5031–5034.
7 (a) B. C. Hamann and J. F. Hartwig, J. Am. Chem. Soc., 1998, 120,
3694–3703; (b) J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 2000,
65, 1144–1157; (c) J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin and
S. L. Buchwald, J. Org. Chem., 2000, 65, 1158–1174; (d) J. F. Hartwig,
Angew. Chem., Int. Ed., 1998, 37, 2046–2067; (e) J. P. Wolfe, S. Wagaw,
J.-F. Marcoux and S. L. Buchwald, Acc. Chem. Res., 1998, 31, 805–818;
(f) M. W. Hooper, M. Utsunomiya and J. F. Hartwig, J. Org. Chem.,
2003, 68, 2861–2873; (g) R. B. Bedford, C. S. J. Cazin and D. Holder,
Coord. Chem. Rev., 2004, 248, 2283–2321; (h) K. W. Anderson, R. E.
Tundel, T. Ikawa, R. A. Altman and S. L. Buchwald, Angew. Chem.,
Int. Ed., 2006, 45, 6523–6527.
8 (a) K. Koike, Z. Jia, T. Nikaido, Y. Liu, Y. Zhao and D. Guo, Org. Lett.,
1999, 1, 197–198; (b) H. Kurate, M. Inase and M. Oda, Chem. Lett.,
1999, 519–520; (c) S. Thayumanavan, J. Mendez and S. R. Marder,
J. Org. Chem., 1999, 64, 4289–4297.
9 M. D. Charles, P. Schultz and S. L. Buchwald, Org. Lett., 2005, 7,
3965–3968.
1
at this stage from the H NMR spectrum of the crude product
(generally a mixture of silylated and free alcohol) by measuring
the ratio of aldehyde to product and assuming that all aldehyde
consumed went to product. Peaks consistent with the product of
pinacol coupling were not observed in any of the catalytic studies
employing ligands 5. The yellow oil was dissolved in THF (1 mL),
a few drops of aqueous 1 M HCl were added, and the resulting
solution was stirred for 10 min when TLC (pentane–AcOEt 9 : 1)
showed complete desilylation. The solvent was removed in vacuo
and the resulting aqueous phase was extracted with Et2O (3 ×
2 mL). The organic layers were combined, dried over anhydrous
Na2SO4 and concentrated in vacuo to give a yellow oil. This was
purified by flash column chromatography on silica gel (1 × 15 cm)
using cyclohexane–AcOEt 5 : 1 as the eluent to give the required
product as a pale yellow oil. Enantioselectivity was determined
by HPLC: Chiralcel OD, hexane–isopropanol 98 : 2, flow rate
0.3 mL min−1: (R) 35.1 min, (S) 41.7 min.
10 T. J. Luker, H. G. Beaton, M. Whiting, A. Mete and D. R. Cheshire,
Tetrahedron Lett., 2000, 41, 7731–7735.
11 (a) Y. Okude, S. Hirano, T. Hiyama and H. Nozaki, J. Am. Chem.
Soc., 1977, 99, 3179–3181; (b) T. Hiyama, K. Kimura and H. Nozaki,
Tetrahedron Lett., 1981, 22, 1037–1040; (c) T. Hiyama, Y. Okude, K.
Kimura and H. Nozaki, Bull. Chem. Soc. Jpn., 1982, 55, 561–568; (d) K.
Takai, K. Kimura, T. Kuroda, T. Hiyama and H. Nozaki, Tetrahedron
Lett., 1983, 24, 5281–5284.
12 (a) R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H. Fujioka,
W.-H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi, M. J.
Martinelli, W. W. McWhorter, Jr., M. Mizuno, M. Nakata, A. E. Stutz,
F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J. Uenishi, J. B. White
and M. Yonaga, J. Am. Chem. Soc., 1989, 111, 7530–7573; (b) T. D.
Aicher, K. R. Buszek, F. G. Fang, C. J. Forsyth, S. H. Jung, Y. Kishi,
M. C. Matelich, P. M. Scola, D. M. Spero and S. K. Yoon, J. Am. Chem.
Soc., 1992, 114, 3162–3164.
Acknowledgements
We thank the Irish Research Council for Science, Engineering
and Technology for the award of a postgraduate scholarship to
GH (RS/2003/36). TPO’S acknowledges financial support from
the Centre for Synthesis and Chemical Biology (CSCB), which
was funded by the Higher Education Authority’s Programme
for Research in Third-Level Institutions (PRTLI). We thank our
colleague Professor Declan Gilheany for helpful discussions on
chromium chemistry.
13 G. C. Hargaden and P. J. Guiry, Adv. Synth. Catal., 2007, 349, 2407–
2424.
14 (a) G. Xia and H. Yamamoto, J. Am. Chem. Soc., 2006, 128, 2554–2555;
(b) G. Xia and H. Yamamoto, J. Am. Chem. Soc., 2007, 129, 496–497.
15 (a) J. Y. Lee, J. J. Miller, S. S. Hamilton and M. S. Sigman, Org. Lett.,
2005, 7, 1837–1839; (b) J. J. Miller and M. S. Sigman, J. Am. Chem.
Soc., 2007, 129, 2752–2753.
16 (a) M. Bandini, P. G. Cozzi and A. Umani-Ronchi, Angew. Chem., Int.
Ed., 2000, 112, 2417–2420; (b) M. Bandini, P. G. Cozzi and A. Umani-
Ronchi, Polyhedron, 2000, 19, 537–539; (c) M. Bandini, P. G. Cozzi and
A. Umani-Ronchi, Tetrahedron, 2001, 57, 835–843; (d) M. Bandini,
P. G. Cozzi, P. Melchiorre, S. Morganti and A. Umani-Ronchi, Org.
Lett., 2001, 3, 1153–1155; (e) M. Bandini, P. G. Cozzi, P. Melchiorre,
R. Tino and A. Umani-Ronchi, Tetrahedron: Asymmetry, 2001, 12,
1063–1069.
17 A. Berkessel, D. Menche, C. A. Sklorz, M. Schro¨der and I. Paterson,
Angew. Chem., Int. Ed., 2003, 42, 1032–1035.
18 M. Kuroso, M.-H. Lin and Y. Kishi, J. Am. Chem. Soc., 2004, 126,
12248–12249.
References
1 (a) A. K. Ghosh, P. Mathivanan and J. Cappiello, Tetrahedron:
Asymmetry, 1998, 9, 1–45; (b) G. Helmchen and A. Pfaltz, Acc. Chem.
Res., 2000, 33, 336–345; (c) O. B. Sutcliffe and M. R. Bryce, Tetrahedron:
Asymmetry, 2003, 14, 2297–2325; (d) H. A. McManus and P. J. Guiry,
Chem. Rev., 2004, 104, 4151–4202; (e) G. Desimoni, G. Faita and K. A.
Jørgensen, Chem. Rev., 2006, 106, 3561–3651.
2 (a) H. Nishiyama, Y. Itoh, T. Matsumoto, S.-B. Park and K. Itoh,
J. Am. Chem. Soc., 1994, 116, 2223–2224; (b) H. Nishiyama, N. Soeda,
T. Naito and Y. Motoyama, Tetrahedron: Asymmetry, 1998, 9, 2865–
2878; (c) H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata,
M. Kondo and K. Itoh, Organometallics, 1989, 8, 846–848; (d) H.
Nishiyama, S. Yamaguchi, M. Kondo and K. Itoh, J. Org. Chem.,
19 G. C. Hargaden, H. Mu¨ller-Bunz and P. J. Guiry, Eur. J. Org. Chem.,
2007, 25, 4235–4243.
20 H. A. McManus, H. Mu¨ller-Bunz, P. J. Guiry, unpublished results.
566 | Org. Biomol. Chem., 2008, 6, 562–566
This journal is
The Royal Society of Chemistry 2008
©