Organic & Biomolecular Chemistry
Paper
τminor = 26.2 min. M.p. 100–102 °C. [α]2D6 = –3 (c 0.96, CHCl3,
69% ee). 1H NMR (400 MHz, CDCl3) δ 7.29–7.34 (m, 4H),
7.15–7.21 (m, 6H), 4.02 (q, J = 5.7, 12.8 Hz, 1H), 2.47 (dd, J =
6.5, 7.2 Hz, 1H), 2.10–2.13 (m, 1H), 1.95–2.06 (m, 1H),
1.88–1.91 (m, 1H), 1.79–1.81 (m, 2H), 1.66–1.70 (m, 1H),
1.13–1.46 (m, 5H). 13C NMR (100 MHz, CDCl3) δ 150.3 (d, J =
10.1 Hz, 1C), 150.2 (d, J = 9.8 Hz, 1C), 129.7 (d, J = 5.7 Hz, 4C),
125.2 (m, 2C), 120.6 (d, J = 4.0 Hz, 2C), 120.6 (d, J = 4.0 Hz,
2C), 72.6 (d, J = 155.1 Hz, 1C), 39.8 (d, J = 2.4 Hz, 1C), 29.9 (d,
J = 9.5 Hz, 1C), 27.9 (d, J = 7.6 Hz, 1C), 26.1 (1C), 25.9 (d, J =
17.6 Hz, 2C). IR (KBr film) (cm−1) ν 3325, 2932, 2852, 1591,
1487, 1448, 1408, 1193, 1161, 1106, 1070, 1003, 972, 935, 802,
774, 690, 661, 475. HRMS (ESI+) calcd C19H23NaO4P 369.1232;
found 369.1226 [M + Na].
3 For selected examples, see: (a) D. V. Patel, K. Rielly-Gauvin
and D. E. Ryono, Tetrahedron Lett., 1990, 31, 5587;
(b) D. V. Patel, K. Rielly-Gauvin and D. E. Ryono, Tetra-
hedron Lett., 1990, 31, 5591; (c) B. Stowasser, K.-H. Budt,
L. Jian-Qi, A. Peyman and D. Ruppert, Tetrahedron Lett.,
1992, 33, 6625; (d) J. A. Sikorski, M. J. Miller,
D. S. Braccolino, D. G. Cleary, S. D. Corey, J. L. Font,
K. J. Gruys, C. Y. Han, K. C. Lin, P. D. Pansegrau,
J. E. Ream, D. Schnur, A. Shah and M. C. Walker, Phos-
phorus, Sulfur Silicon Relat. Elem., 1993, 76, 375; (e) P. Page,
C. Blonski and J. Périé, Bioorg. Med. Chem., 1999, 7, 1403;
(f) Y. Kobayashi, A. D. William and Y. Tokoro, J. Org. Chem.,
2001, 66, 7903; (g) Y.-h. Koh, J. H. Shim, J. Z. Wu,
W. Zhong, Z. Hong and J.-L. Girardet, J. Med. Chem., 2005,
48, 2867.
(R)-Diphenyl-1-hydroxy-2,2-dimethylpropylphosphonate (4ek).
Following the general procedure, compound 4ek was obtained
after 94 h of reaction at −38 °C as a white solid in 73% yield
(23.4 mg). The ee of the product was determined to be 85% by
HPLC using a Daicel Chiralpak IA column (n-hexane–i-PrOH =
98 : 2, flow rate 1 mL min−1, λ = 262.4 nm): τmajor = 28.2 min;
τminor = 32.6 min. M.p. 116–120 °C. [α]2D5 = +7 (c 0.47, acetone,
84% ee). 1H NMR (400 MHz, CDCl3) δ 7.28–7.34 (m, 4H),
7.14–7.20 (m, 6H), 3.92 (dd, J = 6.4, 7.2 Hz, 1H), 2.59 (dd, J =
6.8, 7.8 Hz, 1H), 1.22 (s, 9H). 13C NMR (100 MHz, CDCl3) δ
150.3 (d, J = 22.2 Hz, 1C), 150.2 (d, J = 21.9 Hz, 1C), 129.7 (d,
J = 7.6 Hz, 4C), 125.2 (d, J = 3.5 Hz, 1C), 125.1 (d, J = 3.5 Hz,
1C), 120.6 (d, J = 4.0 Hz, 2C), 120.6 (d, J = 4.1 Hz, 2C), 76.3 (d,
J = 152.5 Hz, 1C), 35.0 (d, J = 3.6 Hz, 1C), 26.7 (d, J = 6.7 Hz,
3C). IR (KBr film) (cm−1) ν 3357, 2924, 2854, 1590, 1490, 1462,
1377, 1246, 1205, 1189, 1161, 1064, 945, 903, 802, 766, 690.
HRMS (ESI+) calcd C17H21NaO4P 343.1075; found 343.1070
[M + Na].
4 For selected examples, see: (a) J. G. Allen, F. R. Atherton,
M. J. Hall, C. H. Hassall, S. W. Holmes, R. W. Lambert,
L. J. Nisbet and P. S. Ringrose, Antimicrob. Agents Che-
mother., 1979, 15, 684; (b) F. R. Atherton, M. J. Hall,
C. H. Hassall, R. W. Lambert, W. J. Lloyd and
P. S. Ringrose, Antimicrob. Agents Chemother., 1979, 15, 696;
(c) D. V. Patel, K. Rielly-Gauvin, D. E. Ryono, C. A. Free,
W. L. Rogers, S. A. Smith, J. M. DeForrest, R. S. Oehl and
E. W. Petrillo Jr., J. Med. Chem., 1995, 38, 4557;
(d) Aminophosponic and aminophosphinic acids: Chemistry
and Biological Activity, ed. V. P. Kukhar and H. R. Hudson,
Wiley, Chichester, 2000; (e) J. Huang and R. Chen, Heteroat.
Chem., 2000, 11, 480.
5 For the pioneering enantioselective hydrophosphonylation
of aldehydes using metal catalysts, see: (a) T. Arai,
M. Bougauchi, H. Sasai and M. Shibasaki, J. Org. Chem.,
1996, 61, 2926; (b) H. Sasai, M. Bougauchi, T. Arai and
M. Shibasaki, Tetrahedron Lett., 1997, 38, 2717.
6 For additional remarkable examples of metal catalysed-
hydrophosphonylation reaction of aldehydes, see also:
(a) D. M. Cermak, Y. Du and D. F. Weimer, J. Org. Chem.,
1999, 64, 388; (b) J. P. Duxbury, J. N. D. Warne, R. Mushtaq,
C. Ward, M. Thornton-Pett, M. Jiang, R. Greatrex and
T. P. Kee, Organometallics, 2000, 19, 4445; (c) B. Saito and
T. Katsuki, Angew. Chem., Int. Ed., 2005, 44, 4600;
(d) B. Saito, H. Egami and T. Katsuki, J. Am. Chem. Soc.,
2007, 129, 1978; (e) X. Zhou, X. Liu, X. Yang, D. Shang,
J. Xin and X. Feng, Angew. Chem., Int. Ed., 2008, 47, 392;
(f) J. P. Abell and H. Yamamoto, J. Am. Chem. Soc., 2008,
130, 10521; (g) F. Yang, D. Zhao, J. Lan, P. Xi, L. Yang,
S. Xiang and J. You, Angew. Chem., Int. Ed., 2008, 47, 5646;
(h) K. Suyama, Y. Sakai, K. Matsumoto, B. Saito and
T. Katsuki, Angew. Chem., Int. Ed., 2010, 49, 797;
(i) P. Muthupandi and G. Sekar, Org. Biomol. Chem., 2012,
10, 5347.
Acknowledgements
We thank the Spanish Ministry of Economía y Competitividad
(MEC CTQ2010-19606 and CTQ2011-27593) and the Govern-
ment of Aragón (Zaragoza, Spain Research Group E-10) for
financial support of our research. P. J. S. M. acknowledges
funding through the “Ramón y Cajal” program (MEC).
Notes and references
1 A. N. Pudovik and I. V. Konovalova, Synthesis, 1979, 81.
2 (a) H. Gröger and B. Hammer, Chem.–Eur. J., 2000, 6, 943;
(b) D. Enders, A. Saint-Dizier, M.-I. Lannou and A. Lenzen,
Eur. J. Org. Chem., 2006, 29; (c) P. Merino, E. Marqués-
López and R. P. Herrera, Adv. Synth. Catal., 2008, 350, 1195;
(d) L. Albrecht, A. Albrecht, H. Krawczyk and
K. A. Jørgensen, Chem.–Eur. J., 2010, 16, 28; (e) S. Sobhani
and Z. Tashrifi, Tetrahedron, 2010, 66, 1429;
(f) C. S. Demmer, N. Krogsgaard-Larsen and L. Bunch,
Chem. Rev., 2011, 111, 7981.
7 For selected examples, see: (a) D. L. Pompliano, E. Rands,
M. D. Schaber, S. D. Mosser, N. J. Anthony and J. B. Gibbs,
Biochemistry, 1992, 31, 3800; (b) M. Tao, R. Bihovsky,
G. J. Wells and J. P. Mallamo, J. Med. Chem., 1998, 41, 3912;
(c) M. L. Peters, M. Leonard and A. A. Licata, Cleveland
Clin. J. Med., 2001, 68, 945; (d) R. Snoeck, A. Holý,
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 1258–1264 | 1263