to form naphthalene derivatives as the 1:2 coupling products.6a,7
This indicates that the carboxyl function may act as a unique,
removable directing group. In the context of our further study
of catalytic C-H functionalization,6,8 it has been revealed
that the selective synthesis of 2-vinylindoles can be achieved
by the palladium-catalyzed oxidative coupling of indole-3-
carboxylic acids with alkenes via regioselective vinylation
directed by the carboxyl function and subsequent decar-
boxylation (Scheme 1, Het-CO2H ) indole-3-carboxylic
When 1-methylindole-3-carboxylic acid (1a) (0.4 mmol)
was treated with butyl acrylate (2a) (1.2 mmol) in the
presence of Pd(OAc)2 (0.02 mmol), Cu(OAc)2‚H2O (0.8
mmol), and molecular sieves (MS4A, 400 mg) in DMAc at
120 °C for 2 h under N2, butyl (E)-3-(1-methylindol-2-yl)-
2-propenoate (3a) was formed in 42% yield (entry 1 in Table
1). No 3-vinylated products could be detected by GC-MS
Table 1. Reaction of 1-Methylindole-3-carboxylic Acid (1a)
with Butyl Acrylate (2a)a
Scheme 1
entry
additive
temp (°C)
time (h)
% yield of 3ab
1
2
3
4c
5
6
7
8
120
140
160
140
140
140
140
140
2
2
1
1
2
4
4
4
42
48
42
34
82 (71)
68
46
acids). Furthermore, the protocol has been found to be
applicable to the vinylation of other five-membered het-
eroaromatic systems. These new findings are described
herein.
LiOAc
NaOAc
LiCl
Cs2CO3
52
(4) Reviews: (a) Kakiuchi, F. Top. Organomet. Chem. 2007, 24, 1. (b)
Ackermann, L. Top. Organomet. Chem. 2007, 24, 35. (c) Satoh, T.; Miura,
M. Top. Organomet. Chem. 2007, 24, 61. (d) Kalyani, D.; Sanford, M. S.
Top. Organomet. Chem. 2007, 24, 85. (e) Alberico, D.; Scott, M. E.; Lautens,
M. Chem. ReV. 2007, 107, 174. (f) Jun, C.-H.; Jo, E.-A.; Park, J.-W. Eur.
J. Org. Chem. 2007, 1869. (g) Godula, K.; Sames, D. Science 2006, 312,
67. (h) Satoh, T.; Miura, M. J. Synth. Org. Chem. 2006, 64, 1199. (i) Conley,
B. L.; Tenn, W. J., III; Young, K. J. H.; Ganesh, S. K.; Meier, S. K.;
Ziatdinov, V. R.; Mironov, O.; Oxgaard, J.; Gonzales, J.; Goddard, W. A.,
III; Periana, R. A. J. Mol. Catal. A 2006, 251, 8. (j) Miura, M.; Satoh, T.
Top. Organomet. Chem. 2005, 14, 55. (k) Kakiuchi, F.; Chatani, N. AdV.
Synth. Catal. 2003, 345, 1077. (l) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem.
ReV. 2002, 102, 1731. (m) Miura, M.; Nomura, M. Top. Curr. Chem. 2002,
219, 211. (n) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (o)
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (p) Kakiuchi, F.; Murai,
S. Top. Organomet. Chem. 1999, 3, 47. (q) Shilov, A. E.; Shul’pin, G. B.
Chem. ReV. 1997, 97, 2879.
a Reaction conditions: [1a]:[2a]:[Pd(OAc)2]:[Cu(OAc)2‚H2O]:[additive]
) 0.4:1.2:0.02:0.8:1.2 (in mmol), MS4A (400 mg) in DMAc (10 mL) under
N2. b GC yield based on the amount of 1a used. Value in parentheses
indicates yield after purification. c AgOAc (0.8 mmol) was used in place
of Cu(OAc)2‚H2O.
analysis. The yield of 3a was somewhat enhanced at 140
°C (entry 2), while a further elevation of temperature showed
no positive effect (entry 3). As an oxidant, AgOAc was less
effective than the copper salt (entry 4). Fortunately, the yield
of 3a was almost doubled by addition of LiOAc (1.2 mmol)
(entry 5). Other alkali metal salts examined were less
effective than LiOAc (entries 6-8). It was confirmed that,
under similar conditions, 1-methylindole (4) reacted with 2a
to give C3-vinylated product 5 selectively in 62% yield
(Scheme 2).
(5) Capito, E.; Brown, J. M.; Ricci, A. Chem. Commun. 2005, 1854.
(6) (a) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
(b) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (c) Miura,
M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998,
63, 5211.
(7) The catalytic decarboxylation7a,b,e,g as well as decarboxylative
arylation7c-h,l and vinylation reactions7i-k of carboxylic acids have recently
been reported: (a) Goossen, L. J.; Thiel, W. R.; Rodr´ıguez, N.; Linder, C.;
Melzer, B. AdV. Synth. Catal. 2007, 349, 2241. (b) Dickstein, J. S.;
Mulrooney, C. A.; O’Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. Org.
Lett. 2007, 9, 2441. (c) Gribkov, D. V.; Pastine, S. J.; Schnu¨rch, M.; Sames,
D. J. Am. Chem. Soc. 2007, 129, 11750. (d) Goossen, L. J.; Melzer, B. J.
Org. Chem. 2007, 72, 7473. (e) Goossen, L. J.; Rodr´ıguez, N.; Melzer, B.;
Linder, C.; Deng, G.; Levy, L. M. J. Am. Chem. Soc. 2007, 129, 4824. (f)
Becht, J.-M.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett. 2007, 9, 1781.
(g) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662. (h)
Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.;
Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350. (i) Tanaka, D.; Romeril,
S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323. (j) Tanaka, D.;
Myers, A. G. Org. Lett. 2004, 6, 433. (k) Myers, A. G.; Tanaka, D.;
Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250. (l) Okazawa, T.;
Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 5286.
(8) For example: (a) Uto, T.; Shimizu, M.; Ueura, K.; Tsurugi, H.; Satoh,
T.; Miura, M. J. Org. Chem. 2008, 73, 298. (b) Nakano, M.; Satoh, T.;
Miura, M. J. Org. Chem. 2006, 71, 8309. (c) Terao, Y.; Wakui, H.; Nomoto,
N.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 5236. (d)
Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem.
Soc. 2001, 123, 10407. (e) Nishinaka, Y.; Satoh, T.; Miura, M.; Nomura,
M.; Matsui, H.; Yamaguchi, C. Bull. Chem. Soc. Jpn. 2001, 74, 1727. (f)
Satoh, T.; Inoh, J.-I.; Kawamura, Y.; Kawamura, Y.; Miura, M.; Nomura,
M. Bull. Chem. Soc. Jpn. 1998, 71, 2239.
Scheme 2
a GC yield. Value in parentheses indicates yield after purification.
Table 2 summarizes the results for the coupling reactions
of a series of 1-substituted indole-3-carboxylic acids and
alkenes using the catalyst system of Pd(OAc)2/Cu(OAc)2‚
H2O/LiOAc. Acrylic acid derivatives 1b-d and styrene (1e)
underwent the coupling with 1a to produce the corresponding
1160
Org. Lett., Vol. 10, No. 6, 2008