Copper-Nitrenoid Formation and Transfer
SCHEME 1. Strategy for the Chelation-Assisted
Aziridination
Catalyst options have been expanded in recent years, but known
nitrenoid sources remain limited. Thanks to the pioneering work
of Mansuy,17 N-(p-toluenesulfonyl)imino phenyliodinane (PhI
) NTs) has been most widely employed as an efficient nitrenoid
precursor in the olefin aziridination procedures.18 Although there
are several advantages of using PhI ) NTs, some drawbacks
limit its practical utility, for example, sensitivity to moisture or
air, generation of side products such as oxygenated molecules,
or difficulty in scaling up.19 As a result, for reasons of
convenience, practicality, and environmental concerns, N-
halogenated sulfonamide salts such as chloramine-T and bro-
mamine-T have emerged as alternative nitrogen sources in some
N-transfer reactions.20 However, these pathways are frequently
low yielding due to the competition between hydrogen abstrac-
tion and insertion reactions.
equivalent olefin amounts, and no external ligands.26 In addition,
the mechanism of aziridination has not been studied as much
as that for epoxidation27 or cyclopropanation.28
To overcome these drawbacks, various more convenient
nitrenoid sources have been investigated including sulfona-
mides,21 carbamates,22 and sulfamate derivatives23 in combina-
tion with iodonium salts24 and/or suitable additives.25 However,
reactions are sought that use more user-friendly oxidants,
There are mounting examples showing that the presence of
directing groups adjacent to reacting sites has significant
influence on the reaction outcomes, thus leading to a dramatic
change in efficiency and/or selectivity.29 Nitrogen-containing
organic functional groups readily coordinate to numerous
transition metal species,30 so that they are widely utilized as
effective chelating units.31 Among these, 2-pyridyl groups have
attracted much attention as an effective chelating group.32 We
also have successfully utilized 2-pyridyl moieties in the Ru-
catalyzed hydroesterification and hydroamidation of olefins and
alkynes.33 We previously reported initial results of chelation-
assisted Cu-catalyzed aziridination using 2-pyridinesulfonamides
as a nitrenoid source.34 Described herein are our detailed studies
on the aziridination using 2-pyridinesulfonyl azides and 2-py-
ridinesulfonamides (Scheme 1), focusing on reaction scope and
mechanism.
(8) (a) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J.
Am. Chem. Soc. 1999, 121, 9120-9132. (b) Liang, J.-L.; Yuan, S.-X.;
Huang, J.-S.; Che, C.-M. J. Org. Chem. 2004, 69, 3610-3619.
(9) (a) Mu¨ller, P.; Baud, C.; Jacquier, Y. Can. J. Chem. 1998, 76, 738-
750. (b) Liang, J.-L.; Yuan, S.-X.; Chan, P. W. H.; Che, C.-M. Org. Lett.
2002, 4, 4507-4510. (c) Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc.
2002, 124, 13672-13773.
(10) (a) Bottomley, L. A.; Neely, F. L. J. Am. Chem. Soc. 1988, 110,
6748-6752. (b) Eikey, R. A.; Khan, S. I.; Abu-Omar, M. M. Angew. Chem.,
Int. Ed. 2002, 41, 3592-3595.
(11) Redlich, M.; Hossain, M. M. Tetrahedron Lett. 2004, 45, 8987-
8990.
(12) Gao, G.-Y.; Harden, J. D.; Zhang, X. P. Org. Lett. 2005, 7, 3191-
3193.
(13) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.;
Fujii, N.; Ibuka, T. J. Org. Chem. 1999, 64, 2992-2993.
(14) Waterman, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125,
13350-13351.
(15) Hevia, E.; Perez, J.; Riera, V. Inorg. Chem. 2002, 41, 4673-4679.
(16) Sengupta, S.; Mondal, S. Tetrahedron Lett. 2000, 41, 6245-6248.
(17) Mansuy, D.; Mathy, J.-P.; Dureault, G. B.; Battioni, P. J. Chem.
Soc., Chem. Commun. 1984, 1161-1162.
(26) (a) Vedernikov, A. N.; Caulton, K. G. Org. Lett. 2003, 5, 2591-
2594. (b) Kwong, H.-L.; Liu. D.; Chan, K.-Y.; Lee, C.-S.; Huang, K,-H.;
Che, C.-M. Tetrahedron Lett. 2004, 45, 3965-3968. (c) Fabian, M.;
Fettinger, J. B.; Vedernikov, A. N. J. Org. Chem. 2005, 70, 4833-4839.
(27) (a) Traylor, T. G.; Nakano, T.; Miksztal, A. R.; Dunlap, B. E. J.
Am. Chem. Soc. 1987, 109, 3625-3632. (b) Shi, H.; Zhang, Z.; Wang, Y.
J. Mol. Catal. A: Chem. 2005, 238, 13-25.
(28) (a) Clark, J. S.; Dossetter, A. G.; Wong, Y.-S.; Townsend, R. J.;
Whittingham, W. G.; Russell, C. A. J. Org. Chem. 2004, 69, 3886-3898.
(b) Suenobu, K.; Itagaki, M.; Nakamura, E. J. Am. Chem. Soc. 2004, 126,
7271-7280.
(29) (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. ReV. 1993, 93,
1307-1370. (b) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826-
834. (c) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002,
35, 984-995.
(30) (a) Jun, C.-H.; Hong, J.-B.; Lee, D.-Y. Synlett 1999, 1-12. (b) Itami,
K.; Mitsudo, K.; Nokami, T.; Kamei, T.; Koike, T.; Yoshida, J.-I. J.
Organomet. Chem. 2002, 653, 105-113. (c) Kakiuchi, F.; Chanati, N. AdV.
Synth. Catal. 2003, 345, 1077-1101.
(31) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439-2463.
(32) (a) Siriwardana, A. I.; Kathriarachchi, K. K. A. D. S.; Nakamura,
I.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 13898-
13899. (b) Arraya´s, R. G.; Cabrera, S.; Carretero, T. C. Org. Lett. 2005, 7,
219-221. (c) Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657-3659.
(d) Oi, S.; Sakai, K.; Inoue, Y. Org. Lett. 2005, 7, 4009-4011. (e) Esquivias,
J.; Arraya´s, R. G.; Carretero, T. C. Angew. Chem., Int. Ed. 2006, 45, 629-
633.
(18) (a) Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975,
361-362. (b) Mishira, A. K.; Olmstead, M. M.; Ellison, J. J.; Power, P. P.
Inorg. Chem. 1995, 34, 3210-3214. (c) Taylor, S.; Gullick, J.; McMorn,
P.; Bethell, D.; Page, P. C. B.; Hancock, F. E.; King, F.; Wilock, D. J.;
Hutchings, G. J. Top. Catal. 2003, 25, 81-88.
(19) Simkhovich, L.; Gross, Z. Tetrahedron Lett. 2001, 42, 8089-
8092.
(20) (a) Ando, T.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron Lett.
1998, 39, 309-312. (b) Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 6844-6845. (c) Albone, D.
P.; Aujla, P. S.; Taylor, P. C.; Challenger, S.; Derrick, A. M. J. Org. Chem.
1998, 63, 9569-9571. (d) Chanda, B. M.; Vyas, R.; Bedekar, A. V. J.
Org. Chem. 2001, 66, 30-34. (e) Minakata, S.; Kano, D.; Oderaotoshi, Y.;
Komatsu, M. Angew. Chem., Int. Ed. 2004, 43, 79-81. (f) Vyas, R.; Gao,
G.-Y.; Harden, J. D.; Zhang, X. P. Org. Lett. 2004, 6, 1907-1910.
(21) For recent examples, see: (a) Huang, J.; O’Brien, P. Synthesis 2006,
425-434. (b) Hannam, J.; Harrison, T.; Heath, F.; Madin, A.; Merchant,
K. Synlett 2006, 833-836. (c) Minakata, S.; Morino, Y.; Oderaotoshi, Y.;
Komatsu, M. Chem. Commun. 2006, 3337-3339. (d) Wang, X.; Ding, K.
Chem.sEur. J. 2006, 12, 4568-4575.
(22) For recent examples, see: (a) Padwa, A.; Stengel, T. Org. Lett. 2002,
4, 2137-2139. (b) Liang, J.-L.; Yuan, S.-X.; Chan, P. W. H.; Che, C.-M.
Tetrahedron Lett. 2003, 44, 5917-5920.
(33) (a) Ko, S.; Na, Y.; Chang, S. J. Am. Chem. Soc. 2002, 124, 750-
751. (b) Ko, S.; Lee, C.; Choi, M.-G.; Na, Y.; Chang, S. J. Org. Chem.
2003, 68, 1607-1610. (c) Ko, S.; Han, H.; Chang, S. Org. Lett. 2003, 5,
2687-2690. (d) Na, Y.; Ko, S.; Hwang, L. K.; Chang, S. Tetrahedron Lett.
2003, 44, 4475-4478. (e) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem.
Soc. ReV. 2004, 33, 302-312. (f) Ko, S.; Kang, B.; Chang, S. Angew. Chem.,
Int. Ed. 2005, 44, 455-457. (g) Park, E. J.; Lee, J. M.; Han, H.; Chang, S.
Org. Lett. 2006, 8, 4355-4358.
(23) (a) Keaney, G. F.; Wood, J. L. Tetrahedron Lett. 2005, 46, 4031-
4034. (b) Zhang, J.-L.; Huang, J.-S.; Che, C.-M. Chem.sEur. J. 2006, 12,
3020-3031.
(24) (a) Varvoglis, A. In HyperValent Iodine in Organic Synthesis;
Academic Press: London, 1997. (b) Zhdankin, V. V.; Stang, P. J. Chem.
ReV. 2002, 102, 2523-2584.
(25) (a) Tain, S. L.; Sharma, V. B.; Sain, B. Synth. Commun. 2005, 35,
9-13. (b) Catino, A. J.; Nichols, J. M.; Forslund, R. E.; Doyle, M. P. Org.
Lett. 2005, 7, 2787-2790.
(34) Han, H.; Bae, I.; Yoo, E. J.; Lee, J.; Do, Y.; Chang, S. Org. Lett.
2004, 6, 4109-4112.
J. Org. Chem, Vol. 73, No. 7, 2008 2863