the Knorr reaction suffers one major drawback, i.e., the lack of
regiospecificity (Scheme 1, path a).8 Modifications of this
method by replacing the 1,3-diketones with acetylenic or olefinic
ketones usually allow better control of the regioselectivity.9
Nevertheless, in the cases that Ar2 and Ar3 are similarly
substituted with only minor differences both electronically and
sterically, the complete control of regioselectivity becomes a
daunting task. Meanwhile, 1,3-dipolar cycloaddition reactions
have long been utilized in the syntheses of heterocyclic
compounds including pyrazoles, usually regioselectively.10
Sporadic examples are found in the literature that describe the
reaction of N-monosubstituted hydrazones and nitroolefins
affording pyrazole or pyrazolidine products (path b), presumably
proceeding through the 1,3-dipolar azomethine imine intermedi-
ates generated in situ from hydrazones.11 Compared to Knorr
pyrazole synthesis where regioselectivity relies on differentiating
the reactivity of the two carbonyl groups, path b is intrinsically
more regiospecific because of the significant electronegativity
difference of the N and the C atoms of the hydrazone.
Regioselective Synthesis of 1,3,5-Tri- and
1,3,4,5-Tetrasubstituted Pyrazoles from
N-Arylhydrazones and Nitroolefins
Xiaohu Deng* and Neelakandha S. Mani
Johnson & Johnson Pharmaceutical Research & DeVelopment,
L.L.C., 3210 Merryfield Row, San Diego, California 92121
ReceiVed December 7, 2007
Recently, we have shown that indeed excellent regioselectivity
can be achieved on the reaction of N-monosubstituted hydra-
zones with various nitroolefins in MeOH at room temperature
under air atmosphere.12 Good yields of pyrazole products were
usually obtained with electron-rich hydrazones such as N-
alkylhydrazones. However, even at reflux temperature, electron-
deficient N-arylhydrazones gave low yields of N-arylpyrazole
products that are of most interest to the pharmaceutical
industry.1-5 Hence, there was a clear need of improved reaction
conditions suitable for electron-deficient hydrazones. Herein,
we report two complementary general protocols, one neutral
and the other acidic, for the syntheses of a wide range of 1,3,5-
tri- and 1,3,4,5-tetrasubstituted pyrazoles. The ready availability
of N-arylhydrazones and nitroolefins makes this method par-
ticularly appealing for the library synthesis of the pharmaceuti-
cally relevant pyrazole compounds for drug discovery efforts.
A revised, stepwise mechanism is also proposed based on the
new stereochemistry evidence of the key pyrazolidine interme-
diates.
Two general protocols are developed for the regioselective
synthesis of 1,3,5-tri- and 1,3,4,5-tetrasubstituted pyrazoles
by the reaction of electron-deficient N-arylhydrazones with
nitroolefins. Studies on the stereochemistry of the key
pyrazolidine intermediate suggest a stepwise cycloaddition
mechanism.
Substituted pyrazoles are an important class of compounds
in the pharmaceutical industry.1 Particularly interesting to
medicinal chemists are the 1,3,5-tri- and 1,3,4,5-tetrasubstituted
pyrazoles, which constitute the core structures of commercial
drugs such as Celebrex, Viagra, and Acomplia, as well as
numerous developmental compounds across a wide spectrum
of therapeutic areas such as anti-inflammatory,2 analgesic,3
antibacterial,4 and anti-cancer.5 1,3,5-Triarylpyrazoles have also
been employed as novel ligands in transition-metal-catalyzed
cross-coupling reactions.6 Accordingly, pyrazole synthesis has
long been the subject of interest, which goes back to the 19th
century when Knorr prepared 1,3,5-trisubstituted pyrazoles via
condensation of hydrazines with 1,3-diketones.7 Since then, the
Knorr pyrazole synthesis has been adapted as the standard
method because of its convenience and versatility. However,
(8) (a) Silva, V. L. M.; Silva, A. M. S.; Pinto, D. C. G. A.; Cavaleiro,
J. A. S.; Elguero, J. Eur. J. Org. Chem. 2004, 4348-4356. (b) Heller, S.
T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675-2678.
(9) (a) Huang, Y. R.; Katzenellenbogen, J. A. Org. Lett. 2000, 2, 2833-
2836. (b) Wang, X.-J.; Tan, J.; Grozinger, K. Tetrahedron Lett. 2000, 41,
4713-4716. (c) Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M. V.;
Steel, P. J. J. Org. Chem. 2001, 66, 6787-6791. (d) Bishop, B. C.; Brands,
K. M. J.; Gibb, A. D.; Kennedy, D. J. Synthesis 2004, 43-52. (e) Singh, S.
K.; Reddy, M. S.; Shivaramakrishna, S.; Kavitha, D.; Vasudev, R.; Babu,
J. M.; Sivalakshmidevi, A.; Rao, Y. K. Tetrahedron Lett. 2004, 45, 7679-
7682. (f) Peruncheralathan, S.; Yadav, A. K.; Ila, H.; Junjappa, H. J. Org.
Chem. 2005, 70, 9644-9647. (g) Gosselin, F.; O’Shea, P. D.; Webster, R.
A.; Reamer, R. A.; Tillyer, R. D.; Grabowski, E. J. J. Synlett 2006, 19,
3267-3270.
(1) Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. Targets
Heterocycl. Syst. 2002, 6, 52-98.
(2) (a) Sui, Z.; Guan, J.; Ferro, M. P.; McCoy, K.; Wachter, M. P.;
Murray, W. V.; Singer, M.; Steber, M.; Ritchie, D. M.; Argentieri, D. C.
Bioorg. Med. Chem. Lett. 2000, 10, 601-604. (b) Bekhit, A. A.; Abdel-
Aziem, T. Bioorg. Med. Chem. 2004, 12, 1935-1945. (c) Selvam, C.;
Jachak, S. M.; Thilagavathi, R.; Chakraborti, A. K. Bioorg. Med. Chem.
Lett. 2005, 15, 1793-1797.
(3) Katoch-Rouse, R.; Pavlova, L. A.; Caulder, T.; Hoffman, A. F.;
Mukhin, A. G.; Horti, A. G. J. Med. Chem. 2003, 46, 642-645.
(4) Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Suzuki, K.;
Ueda, T.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi,
J.-I. Bioorg. Med. Chem. 2004, 12, 5515-5524.
(10) (a) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-632.
(b) Padwa, A., Pearson, W. H., Eds. Synthetic Applications of 1,3-Dipolar
Cycloaddition Chemistry Toward Heterocycles and Natural Products; John
Wiley & Sons: New York, 2002.
(5) (a) Stauffer, S. R.; Coletta, C. J.; Tedesco, R.; Nishiguchi, G.; Carlson,
K.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem.
2000, 43, 4934-4947. (b) Stauffer, S. R.; Huang, Y.; Coletta, C. J.; Tedesco,
R.; Katzenellenbogen, J. A. Bioorg. Med. Chem. 2001, 9, 141-150.
(6) (a) Singer, R. A.; Caron, S.; McDermott, R. E.; Arpin, P.; Do, N. M.
Synthesis 2003, 1727-1732. (b) Singer, R. A.; Dore, M.; Sieser, J. E.;
Berliner, M. A. Tetrahedron Lett. 2006, 47, 3727-3731.
(11) (a) Snider, B. B.; Conn, R. S. E.; Sealfon, S. J. Org. Chem. 1979,
44, 218-221. (b) Gomez-Guillen, M.; Conde-Jimenez, J. L. Carbohydr.
Res. 1988, 180, 1-17. (c) Gomez-Guillen, M.; Hans-Hans, F.; Lassaletta-
Simon, J. M.; Martin-Zamora, M. E. Carbohydr. Res. 1989, 189, 349-
358. (d) Arrieta, A.; Carrillo, J. R.; Cossio, F. P.; Diaz-Ortiz, A.; Gomez-
Escalonilla, M. J.; De la Hoz, A.; Langa, F.; Moreno, A. Tetrahedron 1998,
54, 13167-13180.
(7) Knorr, L. Ber. 1883, 16, 2587.
(12) Deng, X.; Mani, N. S. Org. Lett. 2006, 8, 3505-3508.
10.1021/jo7026195 CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/16/2008
2412
J. Org. Chem. 2008, 73, 2412-2415