Organic Letters
Letter
(2) (a) Wang, S. G.; Xia, Z. L.; Xu, R. Q.; Liu, X. J.; Zheng, C.; You,
S. L. Angew. Chem., Int. Ed. 2017, 56, 7440−7443. (b) Gobe, V.;
Dousset, M.; Retailleau, P.; Gandon, V.; Guinchard, X. Adv. Synth.
Catal. 2016, 358, 3960−3965. (c) Hansen, C. L.; Clausen, J. W.; Ohm,
R. G.; Ascic, E.; Le Quement, S. T.; Tanner, D.; Nielsen, T. E. J. Org.
Chem. 2013, 78, 12545−12565. For a review, see: (d) Stockigt, J.;
Antonchick, A. P.; Wu, F. R.; Waldmann, H. Angew. Chem., Int. Ed.
2011, 50, 8538−8564.
Heck-like insertion on indole from VII provided a sky-high
barrier of +50.5 kcal/mol (Figure S10). Taken together within
the framework of the energy span model,21 these results
strongly suggest that indole functionalization occurs via C−H
activation in this sequence. The results also highlight the dual
nature of the carboxylic acid in this cascade. It initially serves to
generate the Pd hydride that triggers alkyne isomerization. The
resulting carboxylate then becomes crucial as well. It plays the
role of a base assisting the metal in the C−H activation,
therefore acting in a catalytic fashion. The desired product is
eventually released by C−C reductive elimination from
metallacycle VIII. This step has a barrier comparable to those
of similar Pd(II) complexes (+16.2 kcal/mol in ΔG).17
We present the first catalytic synthesis of tetrahydrocarbo-
lines from propargylic tryptamines by means of palladium and
carboxylic acid joint catalysis. The method combines interesting
synthetic features with unexpected mechanistic findings. We
anticipate that the latter will produce ample future develop-
ments of indole chemistry in C−H activation sequences.
(3) Liu, X. G.; Meng, Z. L.; Li, C. K.; Lou, H. X.; Liu, L. Angew.
Chem., Int. Ed. 2015, 54, 6012−6015.
(4) (a) Lin, T. Y.; Wu, H. H.; Feng, J. J.; Zhang, J. L. ACS Catal.
2017, 7, 4047−4052. (b) Zhuo, C. X.; Wu, Q. F.; Zhao, Q.; Xu, Q. L.;
You, S. L. J. Am. Chem. Soc. 2013, 135, 8169−8172. (c) Zhang, D. H.;
Tang, X. Y.; Wei, Y.; Shi, M. Chem. - Eur. J. 2013, 19, 13668−13673.
(d) Wu, Q. F.; Zheng, C.; You, S. L. Angew. Chem., Int. Ed. 2012, 51,
1680−1683. (e) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed.
2009, 48, 9533−9537.
(5) (a) Wei, G.; Zhang, C.; Bures, F.; Ye, X.; Tan, C.-H.; Jiang, Z.
ACS Catal. 2016, 6, 3708−3712. (b) Xie, Z.; Zan, X.; Sun, S.; Pan, X.;
Liu, L. Org. Lett. 2016, 18, 3944−3947. (c) Ghislieri, D.; Houghton,
D.; Green, A. P.; Willies, S. C.; Turner, N. J. ACS Catal. 2013, 3,
2869−2872. For a review on bioinspired strategies, see: (d) Ghislieri,
D.; Turner, N. J. Top. Catal. 2014, 57, 284−300.
(6) Wang, Y.; Zhang, P.; Di, X.; Dai, Q.; Zhang, Z.-M.; Zhang, J.
Angew. Chem., Int. Ed. 2017, 56, 15905−15909.
(7) For reviews on allenamides chemistry, see: (a) Manoni, E.;
Bandini, M. Eur. J. Org. Chem. 2016, 2016, 3135−3142. (b) Lu, T.; Lu,
Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862−
4904.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, complete modeling data, character-
ization of products, copies of NMR spectra, XYZ
̀
(8) Lanzi, M.; Caneque, T.; Marchio, L.; Maggi, R.; Bigi, F.; Malacria,
̃
M.; Maestri, G. ACS Catal. 2018, 8, 144−1467.
(9) Selected examples of intramolecular alkyne hydroindolination.
[Au]: (a) Magne, V.; Marinetti, A.; Gandon, V.; Voituriez, A.;
Guinchard, X. Adv. Synth. Catal. 2017, 359, 4036−4042. (b) Cera, G.;
Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett.
2012, 14, 1350−1353. (c) Ferrer, C.; Echavarren, A. M. Angew. Chem.,
Int. Ed. 2006, 45, 1105−1109. [Pt]: (d) Gruit, M.; Pews-Davtyan, A.;
Beller, M. Org. Biomol. Chem. 2011, 9, 1148−1159.
Accession Codes
lographic data for this paper. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(10) For the synthesis and reactivity of Pd hydrides, see: (a) Peacock,
M. D.; Roos, C. B.; Hartwig, J. F. ACS Cent. Sci. 2016, 2, 647−652.
(b) Vyas, D. J.; Larionov, E.; Besnard, C.; Guenee, L.; Mazet, C. J. Am.
Chem. Soc. 2013, 135, 6177−6183.
AUTHOR INFORMATION
■
(11) Selected examples of metal-catalyzed alkyne isomerization. [Pd]:
(a) Yang, C.; Zhang, K.; Wu, Z.; Yao, H.; Lin, A. Org. Lett. 2016, 18,
5332−5335. (b) Kadota, I.; Shibuya, A.; Gyoung, Y. S.; Yamamoto, Y.
J. Am. Chem. Soc. 1998, 120, 10262−10263. [Ru]: (c) Chen, Q.-A.;
Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 3157−3160.
(d) Liang, T.; Nguyen, K. D.; Zhang, W. D.; Krische, M. J. J. Am.
Chem. Soc. 2015, 137, 3161−3164. (e) Park, B. Y.; Nguyen, K. D.;
Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc.
2014, 136, 11902−11095. [Rh]: (f) Yang, X.-H.; Lu, A.; Dong, V. M.
J. Am. Chem. Soc. 2017, 139, 14049−14052. (g) Cruz, F. A.; Zhu, Y.;
Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc. 2017, 139,
10641−10644. Review: (h) Koschker, P.; Breit, B. Acc. Chem. Res.
2016, 49, 1524−1536.
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(12) Patil, N. T.; Song, D.; Yamamoto, Y. Eur. J. Org. Chem. 2006,
2006, 4211−4213.
(13) Mass balance can be accounted with the formation of allenyl-
tryptamine 2a′ as a major side product; see the SI for details.
ACKNOWLEDGMENTS
■
We warmly thank support from the UniPr (Grant RADI-CAT),
MIUR (Grant AROMA-TriP and Departments of Excellence
framework), CNRS, and UPMC. Use of modeling facilities was
provided by ICSN-CNRS (UPR2301, Gif sur Yvette, France).
REFERENCES
■
(1) (a) Paciaroni, N. G.; Ratnayake, R.; Matthews, J. H.; Norwood, V.
M.; Arnold, A. C.; Dang, L. H.; Luesch, H.; Huigens, R. W. Chem. -
Eur. J. 2017, 23, 4327−4335. (b) Tokuda, R.; Okamoto, Y.; Koyama,
T.; Kogure, N.; Kitajima, M.; Takayama, H. Org. Lett. 2016, 18, 3490−
3493. (c) Spindler, A.; Stefan, K.; Wiese, M. J. Med. Chem. 2016, 59,
6121−6135. (d) Kato, N.; et al. Nature 2016, 538, 344−349.
(14) For details on scope limitations, see Figure S1.
(15) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446,
404−408.
(16) Franzoni, I.; Yoon, H.; Garcia Lopez, G.-A.; Poblador-
Bahamonde, A.-I.; Lautens, M. Chem. Sci. 2018, 9, 1496−1509.
D
Org. Lett. XXXX, XXX, XXX−XXX