T. Momose et al. / Tetrahedron Letters 49 (2008) 1376–1379
1379
(a) Savage, I.; Thomas, E. J.; Wilson, P. D. J. Chem. Soc., Perkin
alcohol under chelation control is also noteworthy. Since
vicinal diamino structures are frequently found in biologi-
cally significant natural products as well as chiral ligands
for asymmetric catalysts, the methodology developed in
this study, that is, the cascade Overman rearrangement of
vicinal allylic–homoallylic alcohols, would be applicable
to the preparation of such important compounds. Further
study regarding the synthesis of natural products based on
the methodology employing the cascade sigmatropic rear-
rangement16,17 is now underway.
Trans. 1 1999, 3291–3303; (b) Martin, C.; Prunck, W.; Bortolussi, M.;
¨
Bloch, R. Tetrahedron: Asymmetry 2000, 11, 1585–1592; (c) Roulland,
´
E.; Monneret, C.; Florent, J.-C.; Bennejean, C.; Renard, P.; Leonce,
S. J. Org. Chem. 2002, 67, 4399–4406; (d) Lurain, A. E.; Walsh, P. J.
J. Am. Chem. Soc. 2003, 125, 10677–10683; (e) Ichikawa, Y.; Ito, T.;
Isobe, M. Chem. Eur. J. 2005, 11, 1949–1957; (f) Roy, S.; Spino, C.
Org. Lett. 2006, 8, 939–942.
7. Report of the successful cascade Overman rearrangement on 1,2-
dihydroxy-3-cyclohexene, see: (a) Demay, S.; Kotschy, A.; Knochel,
P. Synthesis 2001, 863–866; Construction of diamines from allylic 1,2-
diols by the stepwise sigmatropic rearrangement, see: (b) Ichikawa,
Y.; Egawa, H.; Ito, T.; Isobe, M.; Nakano, K.; Kotsuki, H. Org. Lett.
2006, 8, 5737–5740; (c) Ichikawa, Y.; Yamaoka, T.; Nakano, K.;
Kotsuki, H. Org. Lett. 2007, 9, 2989–2992.
Supplementary data
8. (a) Dimopoulos, P.; Athlan, A.; Manaviazar, S.; George, J.; Walters,
M.; Lazarides, L.; Aliev, A. E.; Hale, K. J. Org. Lett. 2005, 7, 5369–
5372; (b) Komiotis, D.; Pananookooln, S.; Zaw, K.; Dieter, J. P.; Le
Breton, G. C.; Venton, D. L. Eur. J. Med. Chem. 1995, 30, 321–326;
(c) Uchida, K.; Kato, K.; Akita, H. Synthesis 1999, 1678–1686.
9. Ando, K. Synlett 2001, 1272–1274.
10. All new compounds described in this Letter were characterized by
300 MHz 1H NMR, 75 MHz 13C NMR, IR and mass spectrometric
and/or elemental analyses.
1
The spectrum data and H and 13C NMR spectra of
compounds 9, 10, 12–14, 4, 15, 17, 19, 2, and 1 are avail-
able. Supplementary data associated with this article can
References and notes
11. A similar reaction of the E-isomer of 9 with methylmagnesium
bromide, in which the chelation of magnesium between the carbonyl
and the dioxolane ring is geometrically impossible, produced a
mixture (ca. 1.5:1) of tertiary alcohols.
12. (a) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org. Chem.
1998, 63, 188–192. Although K2CO3 was used as the base in the
original report by Isobe, Na2CO3 was found to produce higher yields
in the cascade Overman rearrangement of 5; see also, (b) Cho, C.-G.;
Lim, Y.-K.; Lee, K.-S.; Jung, I.-H.; Yoon, M.-Y. Synth. Commun.
2000, 30, 1643–1650.
13. (a) Zheng, B.-Z.; Maeda, H.; Mori, M.; Kusaka, S.; Yonemitsu, O.;
Matsushima, T.; Nakajima, N.; Uenishi, J. Chem. Pharm. Bull. 1999,
47, 1288–1296; (b) Zlatopolskiy, B. D.; Kroll, H.-P.; Melotto, E.; de
Meijere, A. Eur. J. Org. Chem. 2004, 21, 4492–4502.
14. It was found that in the Wittig reaction of 17, the reaction
temperature is important for the high Z-selectivity. When the reaction
was carried out at 0 °C, a mixture of the Z- and E-isomers (ca. 10:1)
was obtained.
1. (a) Maring, C.; McDaniel, K.; Krueger, A.; Ahau, C.; Sun, M.;
Madigan, D.; DeGoey, D.; Chen, H.-J.; Yeung, M. C.; Flosi, W.;
Grampovnik, D.; Kati, W.; Klein, L.; Stewart, K.; Stoll, V.; Saldivar,
S.; Montgomery, D.; Carrick, R.; Steffy, K. Kempf, D.; Molla, A.;
Kohlbrenner, W.; Kennedy, A.; Herrin, T.; Xu, Y.; Laver, W.G. In
Presented at 14th International Conference on Antiviral Research,
Antiviral Research 2001, 50, A76; Abstract 129; (b) Raja, S. N.;
George, K. S. T.; Fan, L.; Nequist, G.; Reisch, T.; Maring, C.;
McDaniel, K.; DeGoy, D.; Darbyshire, K. Abstracts of Papers, 41st
Interscience Conference on Antimicrobial Agents and chemotherapy,
Chicago, IL; American Society for Microbiology: Washington, DC,
2001; Abstract F-1683; (c) Kati, W. M.; Montgomery, D.; Carrick,
R.; Gubareva, L.; Maring, C.; McDaniel, K.; Steffy, K.; Molla, A.;
Hayden, F.; Kempf, D.; Kohlbrenner, W. Antimicrob. Agents
Chemother. 2002, 46, 1014–1021; (d) Ison, M. G.; Mishin, V. P.;
Braciale, T. J.; Hayden, F. G.; Gubareva, L. V. J. Infect. Dis. 2006,
´
193, 765–772; (e) Abed, Y.; Nehme, B.; Baz, M.; Boivin, G. Antiviral
15. Urabe, D.; Sugino, K.; Nishikawa, T.; Isobe, M. Tetrahedron Lett.
2004, 45, 9405–9407.
2. DeGoey, D. A.; Chen, H.-J.; Flosi, W. J.; Grampovnik, D. J.; Yeung,
C. M.; Klein, L. L.; Kempf, D. J. J. Org. Chem. 2002, 67, 5445–5453.
3. Hanessian, S.; Bayrakdarian, M.; Luo, X. J. Am. Chem. Soc. 2002,
124, 4716–4721.
4. Barnes, D. M.; Bhagavatula, L.; Demattei, J.; Gupta, A.; Hill, D. R.;
Manna, S.; McLaughlin, M. A.; Nichols, P.; Premchandran, R.;
Rasmussen, M. W.; Tian, Z.; Wittenberger, S. J. Tetrahedron:
Asymmetry 2003, 14, 3541–3551.
5. For an excellent review on Overman rearrangement and related
reactions, see: Overman, L. E.; Carpenter, N. E. In Organic Reactions;
Overman, L. E., Ed.; Wiley: New York, NY, 2005; Vol. 66, pp 1–107.
6. Recent representative reports on the Overman rearrangement and the
related sigmatropic rearrangement of allylic secondary alcohols, see:
16. Some representative reports on the cascade sigmatropic rearrange-
ment, see: (a) Thamos, A. F. J. Am. Chem. Soc. 1969, 91, 3281–3283;
(b) Ziegler, F. E.; Piwinski, J. J. J. Am. Chem. Soc. 1979, 101, 1611–
1612; (c) Mikami, K.; Taya, S.; Fujita, Y.; Nakai, T. J. Org. Chem.
1981, 46, 5447–5449; (d) Curran, D. P.; Suh, Y.-G. Carbohydr. Res.
1987, 171, 161–191; (e) Tisdale, E. J.; Vong, B. G.; Li, H.; Kim, S. H.;
Chowdhury, C.; Theodorakis, E. A. Tetrahedron 2003, 59, 6873–6887;
(f) Nicolaou, K. C.; Lister, T.; Denton, R. M.; Gelin, C. F. Angew.
Chem., Int. Ed. 2007, 46, 7501–7505.
17. Recently, we have reported the synthesis of (ꢀ)-morphine utilizing the
cascade Claisen rearrangement of a cyclohexene-diol derivative. See,
Tanimoto, H.; Saito, R.; Chida, N. Tetrahedron Lett. 2008, 49, 358–
362.