3742
J. Rehdorf et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3739–3743
100%
80%
60%
40%
20%
0%
100%
80%
60%
40%
20%
0%
0
2
4
6
8
10
24
0
2
4
6
8
10
24
time [h]
time [h]
4a
normal ester
abnormal ester
4b
normal ester
abnormal ester
Figure 2. Regioselective Baeyer–Villiger oxidation of 5-hydroxy-3-ketones 4a and 4b using engineered E. coli cells expressing BVMO from P. fluorescens DSM 50106.
4. Gusso, A.; Baccin, C.; Pinna, F.; Strukul, G. Organometallics 1994, 13, 3442.
5. Strukul, G.; Varagnolo, A.; Pinna, F. J. Mol. Catal. A: Chem. 1997, 117, 413.
6. Kawamoto, M.; Utsukihara, T.; Abe, C.; Sato, M.; Saito, M.; Koshimura, M.; Kato,
E-values are between 4 and 40, CPMO now showed a very high and
even reverse selectivity for 4a (E >200). Thus, implementing
CHMOBrachy and CPMO for kinetic resolution of 4a gives access to
both enantiomers of 5a in high optically purity. This fact makes
this reaction a powerful and interesting tool in organic chemistry.
Furthermore, it could be observed that the location of the keto
group in the molecule influences regioselectivity of the enzymes.
While the methyl ester (‘abnormal’ product) was formed only up
to 10% (data not shown) for 4-hydroxy-2-ketones this fact changed
using 5-hydroxy-3-ketones. BVMOPfl even generated 64% or 40% in
favor of the ‘abnormal’ ester in case of 4a and 4b, respectively
(Fig. 2). This is the only option to synthesize ‘abnormal’ esters
enzymatically to our knowledge until now. This observation
underscores the powerful capabilities of BVMOs and not only
broadens their synthetic applicability, but also provides a synthet-
ically useful alternative to already established chemical reactions
in organic chemistry.
N.; Horiuchi, A. C. Biotechnol. Lett. 2008, 30, 1655.
7. van Berkel, W. J. H.; Kamerbeek, N. W.; Fraaije, M. W. J. Biotechnol. 2006, 124,
670.
8. Mihovilovic, M. D.; Rudroff, F.; Müller, B.; Stanetty, P. Bioorg. Med. Chem. Lett.
2003, 13, 1479.
9. Kirschner, A.; Bornscheuer, U. T. Angew. Chem., Int. Ed. 2006, 45, 7004.
10. Kirschner, A.; Altenbuchner, J.; Bornscheuer, U. T. Appl. Microbiol. Biotechnol.
2007, 73, 1065.
11. Geitner, K.; Kirschner, A.; Rehdorf, J.; Schmidt, M.; Mihovilovic, M. D.;
Bornscheuer, U. T. Tetrahedron: Asymmetry 2007, 18, 892.
12. Rodríguez, C.; de Gonzalo, G.; Fraaije, M. W.; Gotor, V. Tetrahedron: Asymmetry
2007, 18, 1338.
13. Kourouli, T.; Kefalas, P.; Ragoussis, N.; Ragoussis, V. J. Org. Chem. 2002, 67,
4615.
14. Chen, Y.-C. J.; Peoples, O. P.; Walsh, C. T. J. Bacteriol. 1988, 170, 781.
15. Brzostowicz, P. C.; Walters, D. M.; Thomas, S. M.; Nagarajan, V.; Rouvière, P. E.
Appl. Environ. Microbiol. 2003, 69, 334.
16. Bramucci, M. G.; Brzostowicz, P. C.; Kostichka, K.; Nagarajan, V.; Rouvière, P. E.,
Thomas, S. M. 2003 Genes encoding Baeyer–Villiger monooxygenases. P. I.
Appl. WO/2003/020890; 2003, 138, 233997.
Based on our observations, aliphatic open-chain b-hydroxyke-
tones are good substrates for most of the BVMOs recombinantly
available so far, especially for those previously described as cyclok-
etone converting enzymes. The possibility to synthesize enantio-
pure 1,2-diols enzymatically is noteworthy, since these
compounds are of special interest for example, in organic industry
for the synthesis of polyesters but also in medical treatment as
antimicrobial agents.40 Furthermore, 1,2-diols are predominantly
synthesized chemically, so far; thus, kinetic resolution of 4-hydro-
xy-2-ketones using BVMOs can accomplish a considerable contri-
bution for environmental protection.
The fact that some BVMOs are capable to generate the ‘abnor-
mal’ Baeyer–Villiger product with high enantioselectivity offers
new possibilities for the synthesis of natural products. Together
with the enantiocomplementary conversion of ketones by different
enzymes it displays the potential of the natural diversity to provide
suites of catalysts for chemical operations. Currently, further
studies on the regioselectivity of BVMOs are in progress in our
laboratories.
17. Brzostowicz, P. C.; Gibson, K. a. L.; Thomas, S. M.; Blasko, M. S.; Rouvière, P. E. J.
Bacteriol. 2000, 18215, 4241.
18. van Beilen, J. B.; Mourlane, F.; Seeger, M. A.; Kovac, J.; Li, Z.; Smits, T. H. M.;
Fritsche, U.; Witholt, B. Environ. Microbiol. 2003, 5, 174.
19. Iwaki, H.; Hasegawa, Y.; Wang, S.; Kayser, M. M.; Lau, P. C. K. Appl. Environ.
Microbiol. 2002, 68, 5671.
20. Rehdorf, J.; Zimmer, C. L.; Bornscheuer, U. T. Appl. Environ. Microbiol. 2009, 75,
3106.
21. Rehdorf, J.; Kirschner, A.; Bornscheuer, U. T. Biotechnol. Lett. 2007, 29,
1393.
22. Typical procedure for screening experiments—Precultures were inoculated with a
single colony from a plate and incubated at 37 °C overnight (in case of CHMO
from Xanthobacter sp. at 30 °C) in an orbital shaker in a baffled Erlenmeyer
flask. LBamp (LBamp/chl for HAPMO from P. putida JD1) was inoculated with 1% of
the overnight preculture and incubated at 37 or 30 °C, respectively, until
OD600nm reached 0.5–0.7. Then, protein expression was induced with either
IPTG (0.1 mM final concentration) or in case of BVMO from P. putida KT2440
with L-rhamnose (0.2% final concentration). Protein expression was performed
at 24 °C for 2 h. Screening was performed in 24-well plastic plates (Greiner
BioOne company). 1 mL bacterial culture was transfered into each well (max.
volume of 2 mL) and substrate was added (2.5 mM final concentration).
Biotransformations were carried out at 24 °C and analyzed after 24 h.
Therefore, samples were extracted with ethyl acetate supplemented with
1.2 mM of an internal standard (benzoic acid methylester) and dried over
sodium sulfate.
23. Typical procedure for time-course experiments—Biotransformations were
performed as described for screening experiments, but here samples were
taken at certain time intervals (2, 4, 6, 8, 10, 24, 30 and 48 h), extracted and
analyzed via GC.
24. Faber, K.; Hönig, H., and Kleewein, A. Free shareware programs (‘Selectivity-
1.0’) for calculation of the enantiomeric ratio. Available on the authors website:
25. Percent regioisomeric excess (% re) is defined as the percentage of the major
regioisomer (both enantiomers) minus the percentage of the minor
regioisomer (both enantiomers).
Acknowledgements
We thank the German Federal Foundation of Environment
(Deutsche Bundesstiftung Umwelt, DBU) for a stipend to Jessica
Rehdorf. Part of this research was funded by the Austrian Science
Fund FWF (P19845). Furthermore, we thank Dr. Pierre Rouviere
(DuPont USA) for providing six recombinantly expressed BVMOs.
26. Mihovilovic, M. D.; Rudroff, F.; Grötzl, B.; Kapitan, P.; Snajdrova, R.; Rydz, J.
Angew. Chem., Int. Ed. 2005, 44, 3609.
27. Snajdrova, R.; Grogan, G.; Mihovilovic, M. D. Bioorg. Med. Chem. Lett. 2006, 16,
4813.
References and notes
1. Mihovilovic, M. D. Curr. Opin. Chem. 2006, 10, 1265.
2. Krow, G. R. Org. React. 1993, 43, 251.
3. Kamerbeek, N. M.; Janssen, D. B.; van Berkel, W. J. H.; Fraaije, M. W. Adv. Synth.
Catal. 2003, 345, 667.
28. Mihovilovic, M. D.; Kapitan, P.; Kapitanova, P. ChemSusChem 2008, 1, 143.
29. Cernuchová, P.; Mihovilovic, M. D. Org. Biomol. Chem. 2007, 5, 1715.
30. Kyte, B. G.; Rouvière, P. E.; Cheng, Q.; Stewart, J. D. J. Org. Chem. 2004,
69, 12.