D.J. Schipper et al. / Tetrahedron 65 (2009) 3155–3164
3163
J¼8.9 Hz); 13C NMR (100 MHz, CDCl3, 293 K, TMS): 19.2, 55.5, 110.8,
806; HRMS calculated for
355.1415; Rf: 0.33 (5% MeOH, 10% Me2CO, DCM).
C
20H21NO5 (Mþ) 355.1420, found:
114.1, 115.7, 121.7, 124.9, 127.7, 131.6, 152.3, 154.7, 161.5; IR (nmax
/
cmꢁ1): 2912, 2235, 1614, 1272, 1260, 1017; HRMS calculated for
C14H12N2O2 (Mþ) 240.0899, found: 240.08825; mp: 193–195 ꢀC
(CH2Cl2); Rf: 0.14 (1% MeOH, 3% Me2CO, DCM).
4.4.5. 1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline (11)
N-Oxide reduction was carried out using a procedure described
by Ohta et al.17 The N-oxide (30 mg, 0.084 mmol) is dissolved in
THF (1.3 mL). To this mixture is then added saturated NH4Cl
solution (1.3 mL) and zinc dust (55.2 mg, 0.844 mmol). This
mixture is then stirred for 1 h. The deposit is then collected by
filtration on Celite and washed with Et2O. The organic layer is
then separated and the aqueous layer is extracted with Et2O. The
organics are combined, dried over MgSO4, filtered, and concen-
trated under reduced pressure. Purification via silica gel column
chromatography using 3% MeOH/7% Me2CO/DCM gave papaverine
in 94% yield. Spectral data corresponds to that previously de-
scribed in the literature.13a
4.4. Natural product synthesis (Scheme 3)
4.4.1. 6,7-Dimethoxy-1-methylisoquinoline 2-oxide (7)
Prepared by a method adopted from Sharpless et al.12 A mixture
of 6,7-dimethoxy-1-methylisoquinoline (1 g, 4.9 mmol) and
MeReO3 (60 mg, 0.24 mmol) in CH2Cl2 (5 mL) was treated with
4 mL of 50% aqueous H2O2 and stirred for 15 h at 24 ꢀC. The biphasic
reaction mixture was then treated with a catalytic amount of MnO2
and stirred until oxygen evolution ceased. Following phase sepa-
ration, the water layer was extracted with CH2Cl2 and the combined
organic layers were dried over MgSO4, filtered, concentrated, and
flashed over silica gel using 5% MeOH/10% Me2CO/CH2Cl2 to give
753 mg (70%) of a light yellow solid: 1H NMR (400 MHz, CDCl3,
293 K, TMS): 2.87 (3H, s), 4.02 (3H, s), 4.05 (3H, s), 7.04 (1H, s), 7.13
(1H, s), 7.39 (1H, d, J¼7.0 Hz), 8.13 (1H, d, J¼7.0 Hz); 13C NMR
(100 MHz, CDCl3, 293 K, TMS): 13.2, 56.1, 56.2, 102.8, 106.0, 120.3
124.7, 125.2, 135.0, 143.8, 151.2, 151.5; IR (nmax/cmꢁ1): 2842, 1619,
1517, 1433, 1270, 1201, 1058, 805; HRMS calculated for C12H13NO3
(Mþ) 219.0895, found: 219.0876; mp: 84–86 ꢀC (CH2Cl2) Rf: 0.18 (5%
MeOH, 10% Me2CO, DCM).
Acknowledgements
The authors thank NSERC, the University of Ottawa, the Re-
search Corporation, Boehringer Ingelheim (Laval), Merck Frosst
Canada, Merck Inc., and Astra Zeneca Montreal for support of this
work.
Supplementary data
Supplementary data associated with this article can be found in
4.4.2. 1-(4-(Benzyloxy)benzyl)-6,7-dimethoxyisoquinoline
2-oxide (8)
This compound was obtained in 55% yield as a brown solid using
the general sp3 arylation procedure except Ru-Phos was used in
place of X-Phos as the ligand. 1H NMR (400 MHz, CDCl3, 293 K,
TMS): 3.93 (3H, s), 3.98 (3H, s), 4.73 (2H, s), 4.99 (2H, s), 6.87 (2H, d,
J¼8.6 Hz), 7.02 (1H, s), 7.18 (1H, s), 7.26–7.41 (8H, m), 8.15 (1H, d,
J¼7.0 Hz); 13C NMR (100 MHz, CDCl3, 293 K, TMS): 31.3, 56.0, 56.1,
70.0, 103.0, 106.0, 115.1, 120.9, 124.7, 125.5, 127.4, 127.9, 128.5, 129.6,
129.7, 135.2, 137.0, 145.8, 151.1, 151.6, 157.5; IR (nmax/cmꢁ1): 3036,
2932, 1612, 1267, 1235, 803; HRMS calculated for C25H23NO4 (Mþ)
401.1627, found: 401.1643; mp: 74–77 ꢀC; Rf: 0.31 (5% MeOH, 10%
Me2CO, DCM).
References and notes
1. For general reviews on direct arylation, see: (a) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174; (b) Campeau, L.-C.; Stuart, D. R.; Fagnou,
K. Aldrichimica Acta 2007, 40, 35; (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev.
2007, 36, 1173; (d) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200; (e) Lewis, J. C.;
Bergman, R. C.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
2. For reviews on C–H activation, see: (a) Kalyani, D.; Dick, A. R.; Anani, W. Q.;
Sanford, M. S. Tetrahedron 2006, 62, 11483; (b) Labinger, J. A.; Bercaw, J. E.
Nature 2002, 417, 507; (c) Ritleng, V.; Silin, C.; Pfeffer, M. Chem. Rev. 2002, 102,
1731; (d) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633; (e)
Godula, K.; Sames, D. Science 2006, 312, 67; (f) Li, J.-J.; Giri, R.; Yu, J.-Q. Tetra-
hedron 2008, 64, 6979; (g) Ferreira, E. M.; Zhang, H.; Stoltz, B. M. Tetrahedron
2008, 64, 5987.
3. For reviews, see Refs. 1c and 1d. For recent examples, see: (a) Lane, B. S.;
Sames, D. Org. Lett. 2004, 6, 2897; (b) Li, W. J.; Nelson, D. P.; Jensen, M. S.;
Hoerrner, R. S.; Javadi, G. J.; Cai, D.; Larsen, R. D. Org. Lett. 2003, 5, 4835; (c)
Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.;
Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003, 125, 1700; (d) Wang, X.; Lane,
B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996; (e) Chiong, H. A.; Daugulis, O.
Org. Lett. 2007, 9, 1449; (f) Turner, G. L.; Morris, J. A.; Greany, M. F. Angew.
Chem., Int. Ed. 2007, 46, 7996; (g) Bellina, F.; Cauteruccio, S.; Rossi, R. J. Org.
4.4.3. 4-((6,7-Dimethoxyisoquinolin-1-yl)methyl)phenol (9)
A mixture of 8 (60 mg, 0.15 mmol) and Pd/C (10%, 2 mg) was
stirred in MeOH (1 mL) under a hydrogen atmosphere (1 atm) for
72 h at 24 ꢀC. The reaction mixture was then filtered, concentrated,
and flashed over silica gel using 20–30% Me2CO/CH2Cl2 to give
38 mg (87%) of a light yellow oil: 1H NMR (400 MHz, DMSO-d6,
293 K, TMS): 3.86 (3H, s), 3.89 (3H, s), 4.42 (2H, s), 6.63 (2H, d,
J¼8.5 Hz), 7.11 (2H, d, J¼8.5 Hz), 7.31 (1H, s), 7.47 (1H, s), 7.52 (1H, d,
J¼5.6 Hz), 8.24 (1H, d, J¼5.6 Hz), 9.16 (1H, s); 13C NMR (100 MHz,
DMSO-d6, 293 K, TMS): 40.3, 55.5, 55.6, 104.2, 105.5, 115.0, 118.2,
ꢀ
Chem. 2007, 72, 8543; (h) Pozgan, F.; Rogerm, J.; Doucet, H. ChemSusChem
2008, 1, 404.
4. (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc.
Jpn. 1998, 71, 467; (b) Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett. 2000, 2, 3111.
5. Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett. 2003,
5, 301.
6. Lane, B. S.; Brown, M. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.
7. (a) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2005, 44, 3125; (b) Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am.
Chem. Soc. 2006, 128, 2528; (c) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am.
Chem. Soc. 2008, 130, 8172.
121.9, 129.4, 129.8, 132.7, 140.4, 149.4, 152.0, 155.4, 158.1; IR (nmax
/
cmꢁ1): 2923, 1595, 1233, 1157, 835; HRMS calculated for C18H17NO3
(Mþ) 295.1208, found: 295.1181; Rf: 0.38 (30% Me2CO, DCM).
4.4.4. 1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline
2-oxide (10)
8. (a) Stuart, D. R.; Fagnou, K. Science 2007, 317, 1172; (b) Stuart, D. R.; Villemure,
E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.
9. Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266.
10. (a) Bentley, K. W. In The Isoquinoline Alkaloids; Ravindranath, B., Ed.; Harwood
Academic: Amsterdam, 1998; pp 107–122; (b) Bentley, K. W. Nat. Prod. Rep.
2005, 22, 249; (c) Isolation of papaverine: Merck, G. Ann. 1848, 66, 125.
11. (a) Sar, A.; Saryar, G. Pharmazie 2000, 55, 471; (b) Lin, F. W.; Wang, J. J.; Wu, T. S.
Chem. Pharm. Bull. 2002, 50, 157.
12. Coperet, C.; Adolfsson, H.; Khovong, T. V.; Yudin, A. K.; Sharpless, K. B. J. Org.
Chem. 1998, 63, 1740.
13. For previous syntheses of papaverine, see: (a) Gilmore, C. D.; Allan, K. M.; Stoltz,
B. M. J. Am. Chem. Soc. 2008, 130, 1558; (b) Pictet, A.; Finkelstein, M. Ber. Dtsch.
Chem. Ges. 1909, 42, 1979; (c) Rosenmund, K. W.; Nothnagel, M.; Riesenfeldt, H.
Ber. Dtsch. Chem. Ges. 1927, 60, 392; (d) Mannich, C.; Walther, O. Arch. Pharm.
This compound was obtained in 45% yield as a brown solid using
the general sp3 arylation procedure except Ru-Phos was used in
place of X-Phos as the ligand. 1H NMR (400 MHz, DMSO-d6, 293 K):
3.66 (3H, s), 3.68 (3H, s), 3.88 (3H, s), 3.90 (3H, s), 4.66 (2H, s), 6.79
(1H, d, J¼8.2 Hz), 6.84 (1H, dd, J¼8.2, 1.5 Hz), 7.15 (1H, d, J¼1.5 Hz),
7.37 (1H, s), 7.39 (1H, s), 7.66 (1H, d, J¼7.0 Hz), 8.12 (1H, d, J¼7.0 Hz);
13C NMR (100 MHz, DMSO-d6, 293 K): 30.2, 55.3, 55.4, 55.7, 55.8,
102.9, 106.5, 111.9, 112.7, 115.1, 120.3, 121.2, 124.0, 124.5, 130.6, 134.7,
147.3, 148.5, 150.4, 151.2; IR (nmax/cmꢁ1): 2933, 1517, 1265, 1026,