(quintet, J = 8.0 Hz, 12H), 3.89 (t, J = 6.6 Hz, 12H), 6.42 (d, J = 12.5
Hz, 6H), 6.49 (d, J = 9.0 Hz, 6H), 7.90 (t, J = 8.7 Hz, 6H), 8.33 (s,
6H); 19F NMR (CDCl3, CFCl3, 470.0 MHz), d ꢀ104.9 (d, J = 10.9
Hz, 6F); MS m/z 1981.8 (calc. 1981.7 for C96H84F24O18); FTIR (KBr,
cmꢀ1) 2929, 2856, 1750, 1622, 1511, 1468, 1422, 1343, 1243, 1179,
1123, 1043, 1022, 961, 905, 839. Anal. Calc. for C96H84F24O18: C,
71.03; H, 6.95; F, 6.24. Found: C, 70.94; H, 6.91; F, 6.25%. (b) 2F6F:
1H NMR (CDCl3, TMS, 500.0 MHz) d 0.90 (t, J = 7.2 Hz, 18H),
1.30–1.35 (m, 48H), 1.45 (quintet, J = 8.0 Hz, 12H), 1.80 (quintet, J =
7.9 Hz, 12H), 4.00 (t, J = 6.6 Hz, 12H), 6.50 (d, J = 10.6 Hz, 12H),
8.52 (s, 6H); 19F NMR (CDCl3, CFCl3, 470.0 MHz), d ꢀ105.5 (d, J =
10.9 Hz, 12F); MS m/z 2318.0 (calc. 2318.3 for C120H132F24O18); FTIR
(KBr, cmꢀ1) 2928, 2856, 1756, 1636, 1578, 1511, 1469, 1449, 1421,
1356, 1313, 1249, 1199, 1164, 1124, 1079, 1049, 1023, 949, 904, 839,
775. Anal. Calc. for C120H132F24O18: C, 67.07; H, 6.25; F, 11.79.
Found: C, 67.10; H, 6.27; F, 11.88%. (c) 3F: 1H NMR (CDCl3, TMS,
500.0 MHz) d 0.89 (t, J = 7.1 Hz, 18H), 1.30–1.34 (m, 48H), 1.45
(quintet, J = 7.9 Hz, 12H), 1.81 (quintet, J = 8.0 Hz, 12H), 3.96 (t, J
= 6.8 Hz, 12H), 6.65 (t, J = 8.0 Hz, 6H), 7.48 (dd, J = 11.5 Hz, J =
1.8 Hz, 6H), 7.65 (d, J = 8.8 Hz, 6H), 8.21 (s, 6H); 19F (CDCl3, CFCl3,
470.0 MHz) d ꢀ134.5 (d, J = 8.1 Hz 6F); MS m/z 2318.0 (calc. 2318.3
for C120H132F24O18); FTIR (KBr, cmꢀ1) 2955, 2927, 2857, 1741, 1617,
1519, 1469, 1437, 1425, 1286, 1253, 1193, 1141, 1123, 1071, 931, 893,
750. Anal. Calc. for C120H132F24O18: C, 71.03; H, 6.95; F, 6.24. Found:
C, 71.09; H, 6.93; F, 6.31%. (d) 3F5F: 1H NMR (CDCl3, TMS, 500.0
MHz) d 0.90 (t, J = 7.0 Hz, 18H), 1.30–1.34 (m, 48H), 1.46 (quintet, J
= 8.0 Hz, 12H), 1.76 (quintet, J = 8.0 Hz, 12H), 4.19 (t, J = 6.6 Hz,
12H), 7.38 (d, J = 7.8 Hz, 12H), 8.06 (s, 6H); 19F (CDCl3, CFCl3,
470.0 MHz), d ꢀ127.0 (s, 12F), MS m/z 1934.4 (calc. 1934.1 for
C108H120F12O18); FTIR (KBr, cmꢀ1) 2957, 2928, 2857, 1744, 1622,
1583, 1516, 1436, 1350, 1254, 1205, 1123, 1035, 1002, 947, 890, 751.
Anal. Calc. for C120H132F24O18: C, 67.07; H, 6.25; F, 11.79. Found: C,
67.15; H, 6.34; F, 11.87%.
Table 1 X-Ray diffraction parameters for the mesophases of 3F and
3F5F
dhkl/A
Compound
Lattice const./A
hk
Observed
Calculated
3F
(205 1C)
Colr
20
11
31
40
51
26.4
24.5
15.6
13.3
9.9
4.5 (br)b
3.5 (br)
26.4
24.5
14.9
13.2
9.9
(c2mm)
a = 52.9
b = 27.7
Z = 2a
3F5F
(160 1C)
Colh
a = 31.1
10
11
20
21
30
22
26.9
15.5
13.6
10.1
9.1
7.8
26.9
15.5
13.5
10.2
9.0
7.8
4.5 (br)
3.5 (br)
a
Calculated from the lattice constants a and b, correlation length
along the c-axis (3.5 A) and the postulated density r (1.0 g cmꢀ3).
br = Broad.
b
Table 2 Phase transition temperatures of 2F, 2F6F, 3F, 3F5F, H4
and F4
Compound
Phase transition temperatures/1C (DH/kJ molꢀ1
)
2F
Cr1 82.3 (12.6) Cr2 120 (15.0) Cr3 150 (28.3)
ND 213 (0.8) Iso
Cr1 53.2 (18.1) Cr2 116 (60.9) M 176 (23.0) Iso
1 Organofluorine Chemistry, Principles and Commercial Applications,
ed. R. E. Banks, B. E. Amart and J. C. Tatlow, Plenum, New
York, 1994.
2 (a) Y. Goto, T. Ogawa, S. Sawada and S. Sugimori, Mol. Cryst.
Liq. Cryst., 1991, 209, 1; (b) S. Matsui, T. Kondo and K. Sago,
Mol. Cryst. Liq. Cryst., 2004, 411, 127; (c) D. Pauluth and K.
Tarumi, J. Mater. Chem., 2004, 4, 1219.
2F6F
3F
Cr1 56.1 (3.6) Cr2 196 (3.1) Colr1 210 (0.6) Colr2
237 (0.7) Colr3 400 o Dec.a
3F5F
H47
F48
a
Cr1 14.7 (5.3) Cr2 140 (11.1) Colh 400 o Dec.a
Cr 149 (21.7) Colr 170 (7.2) ND 242 (0.3) Iso
Cr 133 (6.2) Colh 308 (28.4) Iso
3 (a) N. Terasawa, H. Monobe, K. Kiyohara and Y. Shimizu, Chem.
Lett., 2003, 32, 214; (b) B. Alameddine, O. F. Aebischer, W.
Amrein, B. Donnio, R. Deschenaux, D. Guillon, C. Savary, D.
Scanu, O. Scheidegger and T. A. Jenny, Chem. Mater., 2005, 17,
4798; (c) U. Dahn, C. Erdelen, H. Ringsdorf, R. Festag, J. H.
Wendof, P. A. Heiney and N. C. Maliszewskyj, Liq. Cryst., 1995,
19, 759.
4 V. B. Smith and A. G. Massey, Tetrahedron, 1969, 61, 4504.
5 Y. Sasada, H. Monobe, Y. Ueda and Y. Shimizu, Chem. Lett.,
2007, 36(5), 584.
Dec.: Decomposition.
of the phenyl ring with the carbonyl sp2 plane probably
derived from an electrostatic repulsive force between the
strongly electronegative fluorine and carbonyl oxygen atoms.
Thermal stability of mesophases above 400 1C has been
reported only for compounds having large p-conjugation
systems, such as hexabenzocoronenes;9 carbonaceous meso-
phase;10 metallophthalocyanines.11 However, in calamitic li-
quid crystals, no report has been seen such that fluorination of
aromatic rings so drastically enhances the mesomorphic ther-
mal stability.12 Therefore, these results indicate other factors
affected by such fluorination should be considered rather than
the change of electronic state.
6 A. M. Levelut, J. Phys. Lett., 1979, 81.
7 N. H. Tinh, H. Gasparoux and C. Destrade, Mol. Cryst. Liq.
Cryst., 1981, 68, 101.
8 Y. Sasada, H. Monobe, Y. Ueda and Y. Shimizu, to be submitted.
9 P. Herwig, C. W. Kayser, K. Mullen and H. W. Spiess, Adv.
Mater., 1996, 8, 510.
¨
10 (a) J. D. Brooks and G. H. Taylor, Carbon, 1965, 3, 185; (b) J. L.
White, G. L. Guthrie and J. O. Gardner, Carbon, 1967, 5, 517; (c)
H. Honda, K. Kimura, Y. Sanada, S. Sugiwara and T. Furuta,
Carbon, 1970, 8, 151.
11 M. K. Engel, P. Bassoul, L. Bosio, H. Lehmann, M. Hanack and J.
Simon, Liq. Cryst., 1993, 15, 709.
12 (a) A. S. Matharu, S. J. Cowling and G. Wright, Liq. Cryst., 2007,
34, 489; (b) S. J. Cowling, K. J. Toyne and J. W. Goodby, J. Mater.
Chem., 2001, 11, 1590.
Notes and references
1
z (a) 2F: H NMR (CDCl3, TMS, 500.0 MHz) d 0.90 (t, J = 7.0 Hz,
18H), 1.30–1.34 (m, 48H), 1.44 (quintet, J = 7.9 Hz, 12H), 1.76
ꢁc
This journal is The Royal Society of Chemistry 2008
1454 | Chem. Commun., 2008, 1452–1454