Nucleic Acids Research, 2011, Vol. 39, No. 20 9059
14. Kolb,H.C., Finn,M.G. and Sharpless,K.B. (2001) Click chemistry:
diverse chemical function from a few good reactions. Angew.
Chem. Int. Ed., 40, 2004–2021.
15. Kolb,H.C. and Sharpless,K.B. (2003) The growing impact of
click chemistry on drug discovery. Drug Discov. Today, 8,
1128–1137.
34. Ustinov,A.V., Dubnyakova,V.V. and Korshun,V.A. (2008) A
convenient ‘‘click chemistry’’ approach to perylene
diimide-oligonucleotide conjugates. Tetrahedron, 64, 1467–1473.
35. Fraley,A.W., Pons,B., Dalkara,D., Nullans,G., Behr,J.-P. and
Zuber,G. (2006) Cationic oligonucleotide peptide conjugates
with aggregating properties enter efficiently into cells while
maintaining hybridization properties and enzymatic recognition.
J. Am. Chem. Soc., 128, 10763–10771.
16. Meldal,M. and Tornoe,C.W. (2008) Cu-catalyzed azide-alkyne
cycloaddition. Chem. Rev., 108, 2952–3015.
17. Tornoe,C.W., Christensen,C. and Meldal,M. (2002)
Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific
copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes
to azides. J. Org. Chem., 67, 3057–3064.
18. Brown,S.D. and Graham,D. (2010) Conjugation of an
oligonucleotide to Tat, a cell-penetrating peptide, via click
chemistry. Tet. Lett., 51, 5032–5034.
36. Casals,J., Debethune,L., Alvarez,K., Risitano,A., Fox,K.R.,
Grandas,A. and Pedroso,E. (2006) Directing
quadruplex-stabilizing drugs to the telomere: synthesis and
properties of acridine - Oligonucleotide conjugates. Bioconjug.
Chem., 17, 1351–1359.
37. Garegg,P.J., Regberg,T., Stawinski,J. and Stromberg,R. (1985)
¨
Formation of inter-nucleotidic bonds via phosphonate
19. Gogoi,K., Mane,M.V., Kunte,S.S. and Kumar,V.A. (2007) A
versatile method for the preparation of conjugates of peptides
with DNA/PNA/analog by employing chemo-selective click
reaction in water. Nucleic Acids Res., 35, e139.
intermediates. Chem. Scr., 25, 280–282.
38. Garegg,P.J., Regberg,T., Stawinski,J. and Stromberg,R. (1986)
¨
Nucleoside hydrogen-phosphonates in oligonucleotide synthesis.
Chem. Scr., 26, 59–62.
20. Kubo,T., Zhelev,Z., Rumiana,B., Ohba,H., Doi,K. and Fujii,M.
(2005) Controlled intracellular localization and enhanced
antisense effect of oligonucleotides by chemical conjugation.
Org. Biomol. Chem., 3, 3257–3259.
39. Garegg,P.J., Stawinski,J. and Stromberg,R. (1987) Nucleoside
¨
30-H-phosphonates. 8. Activation of hydrogen phosphonate
monoesters by chlorophosphates and arenesulfonyl derivatives.
J. Org. Chem., 52, 284–287.
21. Diala,I., Osada,A., Maruoka,S., Imanisi,T., Murao,S., Ato,T.,
Ohba,H. and Fujii,M. (2007) Synthesis of phosphorothioate
oligonucleotide-peptide conjugates by solid phase fragment
condensation. Bioorg. Med. Chem. Lett., 17, 6576–6578.
22. Stetsenko,D.A. and Gait,M.J.A. (2001) Convenient solid-phase
method for synthesis of 30-conjugates of oligonucleotides.
Bioconjug. Chem., 12, 576–586.
40. Regberg,T., Stawinski,J. and Stromberg,R. (1988) Nucleoside
¨
H-phosphonates. IX. Possible side-reactions during hydrogen
phosphonate diester formation. Nucleosides Nucleotides, 7, 23–35.
41. Sigurdsson,S. and Stromberg,R. (2002) The H-phosphonate
¨
approach to oligonucleotide synthesis. An investigation on the
mechanism of the coupling step. J. Chem. Soc., Perkin Trans., 2,
1682–1688.
23. Kachalova,A., Zubin,E., Stetsenko,D., Gait,M. and Oretskaya,T.
(2004) Oligonucleotides with 20-O-carboxymethyl group: synthesis
and 2’-conjugation via amide bond formation on solid phase.
Org. Biomol. Chem., 2, 2793–2797.
42. Stawinski,J. and Stromberg,R. (2001) Deoxyribo- and
¨
ribonucleoside H-phosphonates. Curr. Protocols Nucleic Acid
Chem., 1, 2.6.1–2.6.15.
43. Stawinski,J. and Stromberg,R. (2005) Di- and oligonucleotide
¨
24. Adam,S.A., Lobl,T.J., Mitchell,M.A. and Gerace,L. (1989)
Identification of specific binding proteins for a nuclear location
sequence. Nature, 337, 276–279.
synthesis using H-phosphonate chemistry. Methods Mol. Biol.,
288, 81–100.
¨
44. Moreno,P., Wenska,M., Lundin,K., Wrange,O., Stromberg,R. and
¨
25. Steunenberg,P., Wenska,M. and Stromberg,R. (2010) Conversion
¨
Smith,E. (2009) A synthetic snRNA m3G-CAP enhances
nuclear delivery of exogenous proteins and nucleic acids.
Nucleic Acids Res., 37, 1925–1935.
of commercial peptides into clickable derivatives for labeling
and conjugate synthesis. Nat. Protocols, doi: 10.1038/
nprot.2010.94.
˚
45. Astrom,H., Williams,N.H. and Stromberg,R. (2003)
¨
¨
26. Kastin,A.J., Pan,W., Maness,L.M. and Banks,W.A. (1999)
Peptides crossing the blood-brain barrier: some unusual
observations. Brain Res., 848, 96–100.
27. Saphire,A.C.S., Bark,S.J. and Gerace,L. (1998) All four
homochiral enantiomers of a nuclear localization sequence
derived from c-Myc serve as functional import signals.
J. Biol. Chem., 273, 29764–29769.
Oligonucleotide based artificial nuclease (OBAN) systems. Bulge
size dependence and positioning of catalytic group in cleavage of
RNA-bulges. Org. Biomol. Chem., 1, 1461–1465.
˚
46. Astrom,H. and Stromberg,R. (2004) Synthesis of new OBAN’s
¨
and further studies on positioning of the catalytic group.
¨
Org. Biomol. Chem., 2, 1901–1907.
47. Murtola,M. and Stromberg,R. (2008) 2’-O-methyloligoribonucleotide
¨
¨
28. Huisgen,R., Szeimies,G. and Mobius,L. (1967) 1.3-Dipolare
based artificial nucleases (20-O-MeOBANs) cleaving a model of
the leukemia related M-BCR/ABL m-RNA. ARKIVOC, 2009,
84–94.
Cycloadditionen, XXXII. Kinetik der Additionen organischer
Azide an CC-Mehrfachbindungen. Chem. Ber., 100, 2494–2507.
29. Sustmann,R. (1974) Orbital energy control of cycloaddition
reactivity. Pure Appl. Chem., 40, 569–593.
30. Hein,J.E. and Fokin,V.V. (2010) Copper-catalyzed azide–alkyne
cycloaddition (CuAAC) and beyond: new reactivity of copper(I)
acetylides. Chem. Soc. Rev., 39, 1302–1315.
31. Sun,S. and Wu,P. (2010) Mechanistic insights into Cu(I)-catalyzed
azide-alkyne ‘‘click’’ cycloaddition monitored by real time infrared
spectroscopy. J. Phys. Chem. A, 114, 8331–8336.
48. Murtola,M. and Stromberg,R. (2008) PNA based artificial
¨
nucleases displaying catalysis with turnover in the cleavage
of a leukemia related RNA model. Org. Biomol. Chem., 6,
3837–3842.
49. Murtola,M., Wenska,M. and Stromberg,R. (2010) PNAzymes that
¨
are artificial RNA restriction enzymes. J. Am. Chem. Soc., 132,
8984–8990.
50. Scheiber,I.F., Schmidt,M.M. and Dringen,R. (2010) Zinc prevents
the copper-induced damage of cultured astrocytes. Neurochem.
Int., 57, 314–322.
51. Hultberg,B., Andersson,A. and Isaksson,A. (1997) Copper ions
differ from other thiol reactive metal ions in their effects on the
concentration and redox status of thiols in HeLa cell cultures.
Toxicology, 117, 89–97.
32. Chiou,S.-H. (1983) DNA- and protein-scission activities of
ascorbate in the presence of copper ion and a copper-peptide
complex. J. Biochem., 94, 1259–1267.
¨
¨
¨
33. Zareie,M.H., Erdem,G., Oner,C., Oner,R., Ogus,A. and Piskin,E.
(1996) Investigation of ascorbate-Cu(II) induced cleavage of DNA
by scanning tunneling microscopy. Int. J. Biol. Macromol., 19,
69–73.