reactions.6 Many carbon-, nitrogen-, oxygen-, and sulfur-linked
substituents have been introduced at C6 by these reactions with
6-halopurine nucleosides.
Synthesis of Novel C6-Phosphonated Purine
Nucleosides under Microwave Irradiation by
SNAr-Arbuzov Reaction
Organphosphorus compounds are remarkable for their diverse
and potent biological activities.7 Their efficacy is often enhanced
by their association with various heterocycles. Phosphonated
azaheterocycles are an important class of compounds with high
biological potential as conformationally restricted bioisosteres
of amino acids.8 Very recently, the heterocycles bearing the
phosphorus functionalities have been synthesized, which would
serve in further functionalizations to produce molecular diversity
and produce biologically active compounds.9 However, there
is no report on the purine containing phosphorus substituents
up to date.
Gui-Rong Qu,* Ran Xia, Xi-Ning Yang, Jian-Guo Li,
Dong-Chao Wang, and Hai-Ming Guo*
College of Chemistry and EnVironmental Science, Henan
Normal UniVersity, Xinxiang 453007, Henan, P. R. China
ReceiVed December 18, 2007
Phosphonation reactions can be carried out in a number of
ways,10 the Arbuzov reaction probably being the most classical
one,10a,b together with SNAr10c or the Pd-coupling reaction on
unsaturated halides,10d-f and especially on electron-deficient
aromatic systems.10g,h As far as Arbuzov-catalyzed10i or catalyst-
free reaction is concerned, alkyl halides (mostly primary) and
acyl halides are commonly used as substrates,11 and aromatic
halides as well as heteraromatic halides can also undergo this
reaction at certain conditions.12
Microwave irradiation is used as an alternative thermal energy
source to conventional heating in organic synthesis. The use of
microwave irradiation has been applied to a wide range of
reaction types, including SNAr, cycloaddition, and organome-
tallic reactions. Many of these reactions have been demonstrated
to result in higher yield and/or selectivity under microwave
irradiation compared with using a heating bath.13
Herein, during the ongoing course of our study on the
development of new methods for the synthesis of nucleoside
analogues under microwave irradiation,14 we applied microwave-
Novel C6-phosphonated purine nucleosides were obtained
in good to excellent isolated yields by the simple and catalyst-
free SNAr-Arbuzov reaction of trialkyl phosphite with
6-choloropurine nucleosides, including a series of nonsugar
carbon nucleosides. Shorter reaction times were needed, and
substantially higher yields were obtained under microwave
irradiation conditions compared with conventional heating
conditions.
(4) (a) Hocek, M.; Masoj´ıdkova´, M.; Holy, A. Tetrahedron 1997, 53,
2291. (b) Langli, G.; Gundersen, L.-L.; Rise, F. Tetrahedron 1996, 52, 5625.
(5) Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J. C.; Dinh,
Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am. Chem. Soc. 2001, 123, 7779.
(6) Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto,
R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. J. Med. Chem. 1992, 35, 241.
(7) (a) Engel, R. Handbook of Organophosphorus Chemistry; Marcel
Dekker, Inc.: New York, 1992. (b) Kafarski, P.; Lejczak, B. Phosphorus
Sulfur Silicon Relat. Elem. 1991, 63, 193.
(8) Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. ReV. 2004, 104, 6177.
(9) (a) Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org.
Lett. 2007, 9, 1125. (b) Alen, J.; Dobrzanska, L.; De Borggraeve, W. M.;
Compernolle, F. J. Org. Chem. 2007, 72, 1055. (c) Al Quntar, A. A. A.;
Srivastava, H. K.; Srebnik, M.; Melman, A.; Ta-Shma, R.; Shurki, A. J.
Org. Chem. 2007, 72, 4932. (d) Moriguchi, T.; Yanagi, T.; Kunimori, M.;
Wada, T.; Sekine, M. J. Org. Chem. 2000, 65, 8229.
(10) (a) Bhattacharya, A. K.; Thyagarajan, G. Chem. ReV. 1981, 81, 415.
(b) Renard, P.-Y.; Vayron, P.; Mioskowski, C. Org. Lett. 2003, 5, 1661.
(c). Estel, L.; Marsais, F.; Queguiner, G. J. Org. Chem. 1988, 53, 2740. (d)
Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748. (e) Hirao, T.;
Masunaga, T.; Obshiro, Y.; Agawa, T. Synthesis 1981, 56. For an overview.
(f) Beleskaya, I. P. Pure Appl. Chem. 1997, 69, 471. (g) Ziessel, R. F.;
Charbonniere, L. J.; Mameri, S.; Camerel, F. J. Org. Chem. 2005, 70, 9835.
(h) Johansson, T.; Stawiski, J. Chem. Commun. 2001, 2564. (i) Renard, P.
Y.; Vayron, P.; Leclerc, E.; Valleix, A.; Mioskowski, C. Angew. Chem.,
Int. Ed. 2003, 42, 2389.
(11) (a) Holy, A.; Gunter, J.; Dvorakova, H.; Masojidkova, M.; Andrei,
G.; Snoeck, R.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1999, 42, 2064.
(b) Zhu, X.; Stolz, F.; Schmidt, R. R. J. Org. Chem. 2004, 69, 7367. (c)
Matveeva, E. V.; Odinets, I. L.; Kozlov, V. A.; Shaplov, A. S.; Mastryukova,
T. A. Tetrahedron Lett. 2006, 47, 7645. (d) Peyrottes, S.; Gallier, F.; Bejaud,
J.; Perigaud, C. Tetrahedron Lett. 2006, 47, 7719.
Natural purine nucleobases play important roles in many
biological processes. Purine derivatives with various substituents
at C6 have received considerable attention due to their broad
spectrum of biological activities.1 From a biological standpoint,
modification at C6 could adjust the number of H-bond in the
purine moiety.2 Advances in the synthesis of purines modified
at C6 include the use of SNAr (nucleophilic aromatic substitu-
tion),3 Stille coupling,4 Suzuki-Miyaura,5 and Sonogashira
(1) (a) Brathe, A.; Gundersen, L.-L.; Rise, F.; Eriksen, A. B.; Vollsnes,
A. V.; Wang, L. Tetrahedron 1999, 55, 211. (b) Cocuzza, A. J.; Chidester,
D. R.; Culp, S.; Fitzgerald, L.; Gilligan, P. Bioorg. Med. Chem. Lett. 1999,
9, 1063. (c) Verdugo, D. E.; Cancilla, M. T.; Ge, X.; Gray, N. S.; Chang,
Y.-T.; Schultz, P. G.; Negishi, M.; Leary, J. A.; Bertozzi, C. R. J. Med.
Chem. 2001, 44, 2683. (d) Perez, O. D.; Chang, Y.-T.; Rosania, G.;
Sutherlin, D.; Schultz, P. G. Chem. Biol. 2002, 9, 475.
(2) (a) Basu, A. K.; Essigmann, J. M. Chem Res. Toxicol. 1988, 1, 1.
(b) Lakshman, M. K.; Ngassa, F. N.; Keeler, J. C.; Dinh, Y. Q. V.; Hilmer,
J. H.; Russon, L. M. Org. Lett. 2000, 2, 927.
(3) (a) Kappler, F.; Hampton, A. J. Med. Chem. 1990, 33, 2545. (b)
Veliz, E. A.; Beal, P. A. J. Org. Chem. 2001, 66, 8592. (c) Pathak, A. K.;
Pathak, V.; Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med Chem. 2004,
47, 273. (d) Wanner, M. J.; Koch, M.; Koomen, G.-J. J. Med. Chem. 2004,
47, 6875. (e) Laufer, S. A.; Domeyer, D. M.; Scior, T. R. F.; Albrecht, W.;
Hauser, D. R. J. J. Med. Chem. 2005, 48, 710. (f) Wang, J.-Q.; Kreklau, E.
L.; Bailey, B. J.; Erickson, L. C.; Zheng, Q.-H. Bioorg. Med. Chem. 2005,
13, 5779. (g) Maruyama, T.; Moriwaka, N.; Demizu, Y.; Ohtsuka, M.
Tetrahedron Lett. 2005, 46, 8225. (h) Nair, V.; Uchil, V.; Neamati, N.
Bioorg. Med. Chem. Lett. 2006, 16, 1920. (i) Liu, J. Q.; Robins, M. J. J.
Am. Chem. Soc. 2007, 129, 5962.
(12) Yao, Q.; Levchik, S. Tetrahedron Lett. 2006, 47, 277.
10.1021/jo702680p CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/29/2008
2416
J. Org. Chem. 2008, 73, 2416-2419