KARA ET AL.
11 of 11
|
[12] M. Catto, L. Pisani, F. Leonetti et al., Bioorg. Med. Chem. 2013, 21, 146.
[13] J. I. da Silva, M. C. de Moraes, L. C. C. Vieira, A. G. Corrêa, Q. B. Cass,
C. L. Cardoso, J. Pharm. Biomed. Anal. 2013, 73, 44.
[14] S. F. Razavi, M. Khoobi, H. Nadri et al., Eur. J. Med. Chem. 2013, 64,
252.
(–log IC50). The huAChE selectivity (SI = pIC50huAChE−pIC50huBChE
)
was then calculated and used as the dependent variable for the 3D
QSAR modeling. The 3D QSAR studies were performed using
Discovery Studio 3.1. The ligands were pre‐aligned using the
substructure based molecular overlay method and placed in a 3D
grid space. The grid spacing was 1.5 Å. The energy potentials on
every grid point were then calculated using a CHARMm force field
which used the electrostatic potential and the van der Waals
potential and treated them as separate terms. A + 1e point charge
is used as the electrostatic potential probe and distance‐dependent
dielectric constant is used to mimic the solvation effect. For the van
der Waals potential a carbon atom with a 1.73 Å radius was used as a
probe. The energy grid potentials can be used as independent
variables to create partial least‐squares. Validation was performed
using leave‐one‐out cross validation method (five folds). The 3D
QSAR was evaluated by using r2 and cross validated r2.
[15] S. O. Nam, D. H. Park, Y. H. Lee, J. H. Ryu, Y. S. Lee, Bioorg. Med.
Chem. 2014, 22, 1262.
[16] J. B. Shaik, B. K. Palaka, M. Penumala et al., Eur. J. Med. Chem. 2015,
107, 219.
[17] S. Ghanei‐Nasab, M. Khoobi, F. Hadizadeh et al., Eur. J. Med. Chem.
2016, 121, 40.
[18] L. G. de Souza, M. N. Renn, J. D. Figueroa‐Villar, Chem. Biol. Interact.
2016, 254, 11.
[19] J. B. Shaik, B. K. Palaka, M. P. et al., Eur. J. Med. Chem. 2016, 107, 219.
[20] F. Sonmez, B. Z. Zengin kurt, I. Gazioglu et al., J. Enzyme Inhib. Med.
Chem. 2017, 32, 285.
[21] M. Alipour, M. Khoobi, H. Nadri et al., Arch. Pharm. Chem. Life Sci.
2013, 346, 577.
[22] M. Alipour, M. Khoobi, A. Moradi et al., Eur. J. Med. Chem. 2014, 82,
536.
[23] D. Yao, J. Wang, G. Wang et al., Bioorg. Chem. 2016, 68, 112.
[24] L. Pisani, R. Farina, M. Catto et al., J. Med. Chem. 2016, 59, 6791.
[25] J. Kara, C. Wattanapiromsakul, L. Lomlim, SDU Res. J. 2013, 6, 141.
[26] W. Si, T. Zhang, L. Zhang et al., Bioorg. Med. Chem. Lett. 2016, 26, 2380.
[27] D. Panek, A. W. Ckowska, T. Wichur et al., Eur. J. Med. Chem. 2017,
125, 676.
|
4.3.2
ADMET analysis
Drug‐likeness of the designed compounds was predicted using the
Discovery Studio 2.5 program.
[28] M. A. Ansari, S. W. Scheff, J. Neuropathol. Exp. Neurol. 2010, 69, 155.
[29] W. ‐J. Huang, X. Zhang, W. ‐W. Chen, Biomed. Rep. 2016, 4, 519.
[30] S. Sharma, S. Verma, M. Kapoor, A. Saini, B. Nehru, Neurol. Res. 2016,
38, 838.
ACKNOWLEDGMENTS
The authors would like to thank Prince of Songkla University (grant
no. PHA570404S) and University of Malaya (Faculty Research Grant:
GPF063B‐2018) for financial support. The authors would like to
thank Miss Maria Mullet for providing linguistic proofreading for the
manuscript.
[31] C. Cheignon, M. Tomas, D. Bonnefont‐Rousselot, P. Faller, C. Hureau,
F. Collin, Redox Biol. 2018, 14, 450.
[32] I. Kostova, S. Bhatia, P. Grigorov et al., Curr. Med. Chem. 2011, 18, 3929.
[33] G. B. Bubols, R. Vianna Dda, A. Medina‐Remon et al., Mini Rev. Med.
Chem. 2013, 13, 318.
[34] Y. Al‐Majedy, A. Al‐Amiery, A. A. Kadhum, A. Bakar Mohamad, Sys.
Rev. Pharm. 2017, 8, 24.
[35] S. N. Haydar, C. Ghiron, L. Bettinetti et al., Bioorg. Med. Chem. 2009,
17, 5247.
CONFLICT OF INTERESTS
[36] L. Lomlim, J. Einsiedel, F. W. Heinemann, K. Meyer, P. Gmeiner,
J. Org. Chem. 2008, 73, 3608.
The authors declare that there are no conflict of interests.
[37] G. L. Ellman, K. D. Courtney, J. R. V. Andres, V. Featherstone, M.
Robert, Biochem. Pharmacol. 1961, 7, 88.
ORCID
[38] Y. Sekiwa, K. Kubota, A. Kobayashi, J. Agric. Food. Chem. 2000, 48,
373.
Luelak Lomlim
[39] P. Skehan, R. Storeng, D. Scudiero et al., .J. Natl. Cancer Inst. 1990, 82,
1107.
REFERENCES
SUPPORTING INFORMATION
[1] Alzheimer's Association, J. Alzheimer's Assoc. 2017, 13(4), 325.
[2] J. L. Sussman, M. Harel, F. Frolow et al., Science 1991, 253, 872.
[3] R. M. Lane, S. G. Potkin, A. Enz, Int. J. Neuropsychopharmacol. 2006,
9, 101.
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
[4] A. N. Cokugras, J. Biochem. 2003, 28, 54.
[5] U. Holzgrabe, P. Kapková, V. Alptüzün, J. Scheiber, E. Kugelmann,
Expert Opin. Ther. Targets 2007, 11, 161.
How to cite this article: Kara J, Suwanhom P,
Wattanapiromsakul C, et al. Synthesis of 2‐(2‐oxo‐2H‐
chromen‐4‐yl)acetamides as potent acetylcholinesterase
inhibitors and molecular insights into binding interactions.
Arch. Pharm. Chem. Life Sci. 2019;e1800310.
[6] G. Kryger, I. Silman, J. L. Sussman, Structure 2003, 7, 297.
[7] D. Muñoz‐Torrero, P. Camps, Curr. Med. Chem. 2006, 13, 399.
[8] L. Piazzi, A. Rampa, A. Bisi et al., J. Med. Chem. 2003, 46, 2279.
[9] X. Zhou, X. B. Wang, T. Wang, L. Y. Kong, Bioorg. Med. Chem. 2008,
16, 8011.
[10] B. Tasso, M. Catto, O. Nicolotti et al., Eur. J. Med. Chem. 2011, 46, 2170.
[11] M. Alipour, M. Khoobi, A. Foroumadi et al., Bioorg. Med. Chem. 2012,
20, 7214.