1516
D. Sato et al. / Tetrahedron Letters 49 (2008) 1514–1517
293; (c) Scheuer, P. J. Tetrahedron 1994, 50, 3; (d) Shimizu, Y. Chem.
MesN
NMes
Ru
Rev. 1993, 93, 1658; (e) Yasumoto, T.; Murata, M. Chem. Rev. 1993,
93, 1895. See also: (f) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.;
Northcore, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2001, 18, 1.
2. Recent reviews for the synthesis of medium-ring ethers see: (a)
Fujiwara, K. In Topics in Heterocyclic Chemistry; Springer: Berlin,
2006; Vol. 5, p 97; (b) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004,
104, 2127; (c) Elliot, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301;
(d) Elliot, M. C.; Williams, E. J. Chem. Soc., Perkin Trans. 1 2001,
2303; (e) Yet, L. Chem. Rev. 2000, 100, 2963; (f) Hoberg, J. O.
Tetrahedron 1998, 54, 12631; (g) Alverz, E.; Candenas, M.-L.; Perez,
R.; Ravelo, J. L.; Martin, J. D. Chem. Rev. 1995, 95, 1953.
3. Recent reviews: (a) Castro, A. M. M. Chem. Rev. 2004, 104, 2939; (b)
Nubbemeyer, U. Synthesis 2003, 961; (c) Chai, Y.; Hong, S.-P.;
Lindsay, H. A.; McFarland, C.; MxIntosh, M. C. Tetrahedron 2002,
58, 2905.
4. (a) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH:
Weinhem, 2003. For the tandem use of Ireland–Claisen rearran-
gement and ring closing olefin metathesis; see: (b) Barrett, A. G. M.;
Ahmed, M.; Baker, S. P.; Baugh, S. P. D.; Braddock, D. C.;
Procopiou, P. A.; White, A. J. P.; William, D. J. J. Org. Chem. 2000,
65, 3716; (c) Miller, J. F.; Termin, A.; Koch, K.; Piscopio, A. D. J.
Org. Chem. 1998, 63, 3158; (d) Burke, S. D.; Ng, R. A.; Morrison, J.
A.; Alberti, M. J. J. Org. Chem. 1998, 63, 3160.
MeO2C
BnO
O
Cl
Cl
Ph
MeO2C
BnO
O
PCy3
Pr
(CH2Cl)2 (5 mM)
80 °C, 3 h
O
N
Bu
(~17%)
O
16
15a
Scheme 5.
Then, we examined RCM of 3-butyloxazolidin-2-on-4-yl
derivative 16 instead of 14a as a control experiment to clar-
ify the efficiency of the N-(3-butenyl) group in RRCM pro-
cess. As a result, a significant decrease in the yield of 15a
(ꢁ17%) was observed under identical cyclization condi-
tions (Scheme 5).19 This indicates that, during the initial
step of RRCM, the metathesis of the N-(3-butenyl) group
is required for high yields of the cyclic ethers.
In summary, a concise process for the stereoselective
synthesis of chiral cis-3-alkoxy-2-carbomethoxy medium-
ring oxacycles from (R)-3-(3-butenyl)-4-propynoyloxazol-
idin-2-one (1) was developed. The process includes major
five steps: (i) hetero-Michael reaction between an alcohol
and 1, (ii) stereoselective reduction of the resulting ketone
6, featuring the stereochemical assistance of the neigh-
boring oxazolidin-2-one group, (iii) esterification with an
alkoxy acetic acid, (iv) chirality-transferring Ireland–Clais-
en rearrangement of the resulting 3-alkoxyallyl glycolate
ester 4 to provide syn-2,3-dialkoxy carboxylate ester 3,
and (v) relay ring-closing olefin metathesis to produce med-
ium-ring ether 2 along with the simultaneous removal of
the oxazolidin-2-one moiety. Further studies including
the reutilization of 8 and the application of the process to
natural product synthesis are currently underway in our
laboratories.
5. Fujiwara, K.; Goto, A.; Sato, D.; Kawai, H.; Suzuki, T. Tetrahedron
Lett. 2005, 46, 3465.
6. Katsumura, S.; Yamamoto, N.; Fukuda, E.; Iwama, S. Chem. Lett.
1995, 393.
7. (a) Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H.
J. Am. Chem. Soc. 2004, 126, 10210; See, also: (b) Boisvert, L.;
Beaumier, F.; Spino, C. Can. J. Chem. 2006, 84, 1290.
10
8. Selected spectral data of 1: ½aꢂD +1.1 (c 1.0, CHCl3); 1H NMR
(300 MHz, CDCl3) d 5.76 (1H, ddd, J = 16.9, 7.3, 6.9 Hz), 5.16–5.08
(2H, m), 4.50 (1H, t, J = 10.6 Hz), 4.42 (1H, dd, J = 10.6, 3.7 Hz),
4.39 (1H, dd, J = 10.6, 3.7 Hz), 3.75 (1H, dt, J = 14.3, 7.3 Hz), 3.52
(1H, s), 3.19 (1H, dt, J = 14.3, 6.6 Hz), 2.34 (2H, m); 13C NMR
(75.5 MHz, CDCl3) d 183.3 (C), 157.3 (C), 134.1 (CH), 117.4 (CH2),
84.7 (CH), 78.3 (C), 63.8 (CH), 63.1 (CH2), 42.4 (CH2), 31.4 (CH2);
IR (film) mmax 3250, 3080, 2979, 2919, 2091, 1753, 1691, 1450,
1443, 1415, 1217, 1113, 1047, 916, 757; LR-EIMS m/z 194 (10.9%,
[M++H]), 55 (bp); HR-EIMS calcd for C10H12O3N [M++H]: 194.08.
9. (a) Lin, C.-C.; Pan, Y.-s.; Patkar, L. N.; Lin, H.-M.; Tzou, D.-L. M.;
Subramanian, T. S.; Lin, C.-C. Bioorg. Med. Chem. 2004, 12, 3259;
(b) Hanessian, S.; Ninkovic, S. J. Org. Chem. 1996, 61, 5418.
10. The optical purity of 10 was determined to be >93% ee by NMR
analysis of the derivative of 10 with (+)- or (ꢀ)-MTPA.
11. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43,
2048.
Acknowledgments
We thank Mr. Kenji Watanabe and Dr. Eri Fukushi
(GC–MS and NMR Laboratory, Graduate School of Agri-
culture, Hokkaido University) for the measurements of
mass spectra. This work was supported by a Global COE
Program (B01: Catalysis as the Basis for Innovation in
Materials Science) and a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science, and Technology of Japanese Government.
12. More, J. D.; Finney, N. S. Org. Lett. 2002, 17, 3001.
13. Ariza, X.; Costa, A. M.; Faja, M.; Pineda, O.; Vilarrasa, J. Org. Lett.
2000, 2, 2809.
14. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953.
23
15. Selected spectral data: 15a: ½aꢂD ꢀ239.4 (c 1.00, CHCl3); 1H NMR
(300 MHz, CDCl3) d 7.33–7.24 (5H, m), 5.86 (1H, dd, J = 10.8,
3.3 Hz), 5.98 (1H, ddd, J = 15.4, 2.6, 1.5 Hz), 4.66 (1H, d,
J = 11.8 Hz), 4.55 (1H, d, J = 11.8 Hz), 4.28 (1H, td, J = 14.1,
2.6 Hz), 4.25 (1H, d, J = 2.8 Hz), 4.19 (1H, dd, J = 14.1, 1.5 Hz), 4.15
(1H, dd J = 3.3, 2.8 Hz), 3.78 (3H, s); 13C NMR (75 MHz, CDCl3) d
169.4 (C), 138.2 (C), 131.2 (CH), 128.2 (CH ꢃ 2), 127.7 (CH ꢃ 2),
127.5 (CH), 122.8 (CH), 77.1 (CH), 70.5 (CH2), 68.7 (CH), 65.8
(CH2), 52.0 (CH3); IR (film) mmax 3032, 2950, 2869, 1764, 1735, 1496,
1454, 1437, 1393, 1352, 1322, 1292, 1260, 1209, 1189, 1096, 1068,
1041, 958, 938, 868, 739, 698; LR-EIMS; m/z 189 ([M+ꢀCO2CH3],
3.1%), 91 (bp); HR-EIMS calcd for C12H13O2 [M+ꢀCO2CH3]:
Supplementary data
Supplementary data associated with this article can be
References and notes
23
189.0916, found: 189.0879. 15b: ½aꢂD ꢀ145.5 (c 0.73, CHCl3); 1H
NMR (300 MHz, CDCl3) d 7.34–7.25 (5H, m), 6.09 (1H, ddd,
J = 11.3, 6.9, 3.6 Hz), 5.89 (1H, ddd, J = 11.3, 6.6, 2.5 Hz), 4.68 (1H,
1. Reviews for natural cyclic ethers, see: (a) Yasumoto, T. Chem. Rec.
2001, 3, 228; (b) Yasumoto, T.; Murata, M. Nat. Prod. Rep. 2000, 17,