Communication
ChemComm
H. Takaya, J. Org. Chem., 1988, 53, 708–710; (g) A. H. Hoveyda and
R. R. Schrock, Chem. – Eur. J., 2001, 7, 945–950.
3 (a) G. Bredig and K. Fajans, Ber. Dtsch. Chem. Ges., 1908, 41, 752–762;
(b) V. S. Martin, S. S. Woodward, T. Katsuki, Y. Yamada, M. Ikeda and
K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237–6240.
phosphate anion and a chiral, racemic allylic cycloalkanol
displayed two salient features that allowed its use in a successful
stereodivergent reaction. First, both enantiomers of the starting
material reacted at similar rates. Second, the relative orientation of
the benzylic substituent in the substrate had little-to-zero influence
on the level of asymmetric induction. These ‘‘abnormalities’’,
combined with the fortuitously large DRf separations of the diastereo-
meric products for a broad range of substrate cycloalkanols, led to a
very efficient deracemization technique described in this commu-
nication. The product b-halo spiroketones were recovered with very
high stereochemical purities and could be further manipulated
chemically.
´ ´
4 (a) F. Romanov-Michailidis, L. Guenee and A. Alexakis, Angew.
Chem., Int. Ed., 2013, 52, 9266–9270; (b) F. Romanov-Michailidis,
´ ´
L. Guenee and A. Alexakis, Org. Lett., 2013, 15, 5890–5893.
5 (a) S. El Baba, J.-C. Poulin and H. B. Kagan, Tetrahedron, 1984, 40,
4275–4284; (b) H. B. Kagan, Tetrahedron, 2001, 57, 2449–2468;
(c) M. Kurosu and Y. Kishi, J. Org. Chem., 1998, 63, 6100–6101;
(d) J. R. Dehil and V. Gotor, J. Org. Chem., 2002, 67, 1716–1718;
(e) K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 8078–8079.
6 (a) B. M. Wang, L. Song, C. A. Fan, Y. Q. Tu and W. M. Chen, Synlett,
2003, 1497–1499; (b) Z.-M. Chen, Q.-W. Zhang, Z.-H. Chen, H. Li,
Y.-Q. Tu, F.-M. Zhang and J.-M. Tian, J. Am. Chem. Soc., 2011, 133,
8818–8821; (c) H. Li, F.-M. Zhang, Y.-Q. Tu, Q.-W. Zhang,
Z.-M. Chen, Z.-H. Chen and J. Li, Chem. Sci., 2011, 2, 1839–1841;
(d) M. Wang, B. M. Wang, L. Shi, Y. Q. Tu, C.-A. Fan, S. H. Wang,
X. D. Hu and S. Y. Zhang, Chem. Commun., 2005, 5580–5582.
7 For recent reviews on quantitative asymmetric transformations of
racemates, see: (a) K. Faber, Chem. – Eur. J., 2001, 7, 5005–5010;
(b) J. Steinreiber, K. Faber and H. Griengl, Chem. – Eur. J., 2008, 14,
8060–8072; (c) H. B. Kagan, Tetrahedron, 2001, 57, 2449–2468.
8 V. Rauniyar, A. D. Lackner, G. L. Hamilton and F. D. Toste, Science,
2011, 334, 1681–1684.
Notes and references
1 J. C. Fiaud and H. B. Kagan, in Top. Stereochem., ed. E. L. Eliel and
S. H. Wilen, vol. 18, John Wiley and Sons, Inc., New York, 1988,
pp. 249–340.
2 For a selection of efficient KR processes, see: (a) R. P. Wurz,
E. C. Lee, J. C. Ruble and G. C. Fu, Adv. Synth. Catal., 2007, 349,
2345–2352; (b) V. Martin, S. Woodard, T. Katsuki, Y. Yamada,
M. Ikeda and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103,
6237–6240; (c) M. S. VanNieuwenhze and K. B. Sharpless, J. Am.
Chem. Soc., 1993, 115, 7864–7865; (d) J. F. Larrow, S. E. Schaus and
9 For the first report on the employment of the TRIP phosphoric acid,
see: M. Klussmann, L. Ratjen, S. Hoffmann, V. Wakchaure,
R. Goddard and B. List, Synlett, 2010, 2189–2192.
S
S
E. N. Jacobsen, J. Am. Chem. Soc., 1996, 118, 7420–7421; 10 The stereochemistries of B2R, B3S, B4 and C2 were confirmed by
(e) S. Hashiguchi, A. Fujii, K.-J. Haack, K. Matsumura, T. Ikariya
and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 37, 288–290;
X-ray diffraction analysis. CCDC 1015663–1015666 contains all of
the crystallographic data for this communication.
( f ) M. Kitamura, I. Kasahara, K. Manabe, R. Noyori and 11 See the ESI† section for details.
13464 | Chem. Commun., 2014, 50, 13461--13464
This journal is ©The Royal Society of Chemistry 2014