10.1002/cmdc.201900019
ChemMedChem
COMMUNICATION
compared to the promiscuous kinase inhibitor genistein (with p
values < 0.05 when comparison of 6ff and 6ee against genistein
Financial support for this work was provide by the National Cancer
Institute (NCI) (R01 CA188015) and the Chicago Biomedical
Consortium. K. Deibler thanks the National Science Foundation
(NSF) for graduate research fellowship (DGE-1324585). A part of
this work was performed by the Northwestern University High
Throughput Analysis Laboratory (NU-HTA), and the Medicinal
and Synthetic Chemistry Core (ChemCore) at the Center for
Molecular Innovation and Drug Discovery (CMIDD), which is
funded by the Chicago Biomedical Consortium with support from
The Searle Funds at The Chicago Community Trust and Cancer
Center Support Grant P30 CA060553 from the National Cancer
Institute awarded to the Robert H. Lurie Comprehensive Cancer
Center.
Table 2. MEK family profiling. All data are IC50 values in µM.
MEK Isoform
MEK
4
MEK
4
ID
1
2
3
5
6
7
(p38)
(Jnk)
6a
6b
6j
0.18
0.92
0.25
0.13
0.39
0.11
0.21
0.20
0.18
0.36
0.26
0.066
0.46
0.88
0.24
0.06
0.75
0.56
0.41
0.51
0.22
0.10
1.5
7.2
11
> 27
15
16
> 27
> 27
> 27
> 27
> 27
16
10
8.3
12
>27
2.3
2.9
6.0
8.5
5.5
4.1
12
21
4.6
10
5.3
1.6
6.0
3.4
3.2
2.2
2.1
8.7
8.8
5.8
11
2.2
2.0
4.9
6.1
5.4
3.7
11
6n
6o
6p
6q
6r
> 27
5.4
Keywords: mitogen-activated protein kinase kinase 4 • MEK4 •
4.0
6.6
7.7
3.9
17
MAP2K4 • indazoles
9.1
References:
7.2
25
[1]
a) C.-T. Hsueh, D. Liu, H. Wang, Biomarker Res. 2013, 1, 1;
b) C. Wellbrock, I. Arozarena, Frontiers in cell and
developmental biology 2016, 4, 33; c) F. Liu, X. Yang, M.
Geng, M. Huang, Acta Pharmaceutica Sinica B 2018, 8, 552;
d) A. Whitmarsh, R. Davis, Oncogene 2007, 26, 3172; e) A.
Akinleye, M. Furqan, N. Mukhi, P. Ravella, D. Liu, Journal of
hematology & oncology 2013, 6, 27; f) B. B. Friday, A. A. Adjei,
Clinical Cancer Research 2008, 14, 342-346.
6.1
19
6s
6z
6ee
6ff
> 27
> 27
9.3
> 27
0.35
> 27
> 27
17
>27
21
6.9
14
6.6
15
0.10
> 27
>27
12
[2]
a) Y. Zhao, A. A. Adjei, Nature Reviews Clinical Oncology
2014, 11, 385; b) L. N. Micel, J. J. Tentler, A.-C. Tan, H. M.
Selby, K. L. Brunkow, K. M. Robertson, S. L. Davis, P. J.
Klauck, T. M. Pitts, E. Gangolli, R. Fabrey, S. M. O'Connell, P.
W. Vincent, S. G. Eckhardt, Mol. Cancer Ther. 2015, 14, 317-
325; c) E. Poplin, Y. Feng, J. Berlin, M. L. Rothenberg, H.
Hochster, E. Mitchell, S. Alberts, P. O'Dwyer, D. Haller, P.
Catalano, D. Cella, A. B. Benson, 3rd, J. Clin. Oncol. 2009, 27,
3778-3785.
[a] Sample size n=2 and 95% confidence intervals were calculated for each
compound tested.
was performed at 10 µM). The results could be indicative of the
necessity to improve compound solubility and cell permeability.
In summary, we have evaluated and optimized the potency of
a series of indazoles selective for MEK4 in vitro. To the best of
our knowledge this is the first potent and selective (among the
MEK family) inhibitor of MEK4. Analysis of the subtle differences
of ligand binding in conjunction with the previous known trends of
MEK family selectively that we have described allowed for the
discovery of a potent and selective MEK4 inhibitor. The empirical
binding affinities and functional potencies, along with sequential
in silico docking studies, were used to predict the molecular
features of the ligands responsible for activity and selectivity
across this kinase family. The structure−activity relationship
described herein indicates that the hit compounds are amenable
to further optimization as they progress into more advanced in
vivo and preclinical studies. The optimized compound 6ff has
strong potency and moderate selectivity which will be improved in
the future. Further evaluation of the lead inhibitors is underway to
validate and pursue MEK4 as a relevant cancer target.
[3]
Z. Xue, D. J. Vis, A. Bruna, T. Sustic, S. van Wageningen, A.
S. Batra, O. M. Rueda, E. Bosdriesz, C. Caldas, L. F. Wessels,
R. Bernards, Cell Research 2018, 28, 719729.
[4]
[5]
A. Cuenda, The international journal of biochemistry & cell
biology 2000, 32, 581-587.
L. Xu, Y. Ding, W. J. Catalona, X. J. Yang, W. F. Anderson, B.
Jovanovic, K. Wellman, J. Killmer, X. Huang, K. A. Scheidt, R.
B. Montgomery, R. C. Bergan, Journal of the National Cancer
Institute 2009, 101, 1141-1155.
[6]
a) B. Derijard, J. Raingeaud, T. Barrett, I. H. Wu, J. Han, R. J.
Ulevitch, R. J. Davis, Science 1995, 267, 682-685; b) T. L.
Lotan, M. Lyon, D. Huo, J. B. Taxy, C. Brendler, B. A. Foster,
W. Stadler, C. W. Rinker-Schaeffer, J. Pathol. 2007, 212, 386-
394; c) L. Wang, Y. Pan, J. L. Dai, Oncogene 2004, 23, 5978-
5985; d) J. M. Pavese, I. M. Ogden, E. A. Voll, X. Huang, L.
Xu, B. Jovanovic, R. C. Bergan, PloS one 2014, 9, e102289.
S. C. Cunningham, E. Gallmeier, T. Hucl, D. A. Dezentje, E.
S. Calhoun, G. Falco, K. Abdelmohsen, M. Gorospe, S. E.
Kern, Cancer research 2006, 66, 5560-5564.
[7]
[8]
[9]
N. Kim, J. Park, C. G. Gadhe, S. J. Cho, Y. Oh, D. Kim, K.
Song, PloS one 2014, 9, e91037.
E. V. Leitao da-Cunha, I. M. Fechine, D. N. Guedes, J. M.
Barbosa-Filho, M. Sobral da Silva, in The Alkaloids: Chemistry
and Biology, Vol. 62 (Ed.: G. A. Cordell), Academic Press,
2005, pp. 1-75.
a) D. E. Lee, K. W. Lee, S. Byun, S. K. Jung, N. Song, S. H.
Lim, Y.-S. Heo, J. E. Kim, N. J. Kang, B. Y. Kim, T. Bowden,
G., A. M. Bode, H. J. Lee, Z. Dong, Journal of Biological
Chemistry 2011, 286, 14246; b) L. Xu, R. Gordon, R. Farmer,
A. Pattanayak, A. Binkowski, X. Huang, M. Avram, S. Krishna,
E. Voll, J. Pavese, J. Chavez, J. Bruce, A. Mazar, A. Nibbs,
W. Anderson, L. Li, B. Jovanovic, S. Pruell, M. Valsecchi, G.
Experimental Section
General methods for the synthesis and characterization of all
compounds, NMR spectra, and methods for the in vitro protocols
can be found in the supplemental information (PDF).
[10]
Acknowledgements
5
This article is protected by copyright. All rights reserved.