RSC Medicinal Chemistry
Research Article
18 J. Shonberg, P. J. Scammells and B. Capuano, Design
Strategies for Bivalent Ligands Targeting GPCRs,
ChemMedChem, 2011, 6, 963–974.
19 C. Hiller, J. Kühhorn and P. Gmeiner, Class A G-Protein-
Coupled Receptor (GPCR) Dimers and Bivalent Ligands,
J. Med. Chem., 2013, 56, 6542–6559.
20 M. W. Majewski, D. M. Gandhi, R. Rosas, R. Kodali, L. A.
Arnold and C. Dockendorff, Design and Evaluation of
Heterobivalent PAR1-PAR2 Ligands as Antagonists of
Calcium Mobilization, ACS Med. Chem. Lett., 2019, 10,
121–126.
21 J. H. Griffin, J. A. Fernandez, A. J. Gale and L. O. Mosnier,
Activated protein C, J. Thromb. Haemostasis, 2007, 5(Suppl 1),
73–80.
22 V. M. Ranieri, B. T. Thompson, P. S. Barie, J.-F.
Dhainaut, I. S. Douglas, S. Finfer, B. Gårdlund, J. C.
Marshall, A. Rhodes, A. Artigas, D. Payen, J. Tenhunen,
H. R. Al-Khalidi, V. Thompson, J. Janes, W. L. Macias,
B. Vangerow and M. D. Williams, Drotrecogin Alfa
(Activated) in Adults with Septic Shock, N. Engl. J. Med.,
2012, 366, 2055–2064.
23 J.-P. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech,
S. L. Goodman and M. A. Arnaout, Crystal structure of the
extracellular segment of integrin αVβ3 in complex with an
Arg-Gly-Asp ligand, Science, 2002, 296, 151–155.
24 D. Cox, M. Brennan and N. Moran, Integrins as therapeutic
targets: lessons and opportunities, Nat. Rev. Drug Discovery,
2010, 9, 804–820.
25 B. Estevez, B. Shen and X. Du, Targeting integrin and
integrin signaling in treating thrombosis, Arterioscler.,
Thromb., Vasc. Biol., 2015, 35, 24–29.
32 C. B. Carlson, P. Mowery, R. M. Owen, E. C. Dykhuizen and
L. L. Kiessling, Selective tumor cell targeting using low-
affinity, multivalent interactions, ACS Chem. Biol., 2007, 2,
119–127.
33 A. Dal Corso, L. Pignataro, L. Belvisi and C. Gennari, αvβ3
Integrin-Targeted Peptide/Peptidomimetic-Drug Conjugates:
In-Depth Analysis of the Linker Technology, Curr. Top. Med.
Chem., 2016, 16, 314–329.
34 R. Haubner, B. Kuhnast, C. Mang, W. A. Weber, H. Kessler,
H.-J. Wester and M. Schwaiger, [18F]Galacto-RGD: Synthesis,
Radiolabeling, Metabolic Stability, and Radiation Dose
Estimates, Bioconjugate Chem., 2004, 15, 61–69.
35 J. Shi, L. Wang, Y.-S. Kim, S. Zhai, Z. Liu, X. Chen and S. Liu,
Improving Tumor Uptake and Excretion Kinetics of 99mTc-
Labeled Cyclic Arginine-Glycine-Aspartic (RGD) Dimers with
Triglycine Linkers, J. Med. Chem., 2008, 51, 7980–7990.
36 J. I. Gavrilyuk, U. Wuellner, S. Salahuddin, R. K. Goswami,
S. C. Sinha and C. F. Barbas, An efficient chemical approach
to bispecific antibodies and antibodies of high valency,
Bioorg. Med. Chem. Lett., 2009, 19, 3716–3720.
37 S. Liu, Radiolabeled Cyclic RGD Peptides as Integrin α vβ
3-Targeted Radiotracers: Maximizing Binding Affinity via
Bivalency, Bioconjugate Chem., 2009, 20, 2199–2213.
38 W. Xiao, Y. Wang, E. Y. Lau, J. Luo, N. Yao, C. Shi, L. Meza,
H. Tseng, Y. Maeda, P. Kumaresan, R. Liu, F. C. Lightstone,
Y. Takada and K. S. Lam, The Use of One-Bead One-
Compound Combinatorial Library Technology to Discover
High-Affinity v 3 Integrin and Cancer Targeting Arginine-
Glycine-Aspartic Acid Ligands with a Built-in Handle, Mol.
Cancer Ther., 2010, 9, 2714–2723.
39 F. Rechenmacher, S. Neubauer, J. Polleux, C. Mas-Moruno,
M. De Simone, E. A. Cavalcanti-Adam, J. P. Spatz, R. Fässler
and H. Kessler, Functionalizing αvβ3- or α5β1-Selective
Integrin Antagonists for Surface Coating: A Method To
Discriminate Integrin Subtypes In Vitro, Angew. Chem., Int.
Ed., 2012, 52, 1572–1575.
40 Y. Zheng, S. Ji, A. Czerwinski, F. Valenzuela, M.
Pennington and S. Liu, FITC-conjugated cyclic RGD
peptides as fluorescent probes for staining integrin αvβ3/
αvβ5 in tumor tissues, Bioconjugate Chem., 2014, 25,
1925–1941.
41 S. K. Shaw, C. L. Schreiber, F. M. Roland, P. M. Battles, S. P.
Brennan, S. J. Padanilam and B. D. Smith, High expression
of integrin αvβ3 enables uptake of targeted fluorescent
probes into ovarian cancer cells and tumors, Bioorg. Med.
Chem., 2018, 26, 2085–2091.
26 K. Ley, J. Rivera-Nieves, W. J. Sandborn and S. Shattil,
Integrin-based therapeutics: biological basis, clinical use
and new drugs, Nat. Rev. Drug Discovery, 2016, 15, 173–183.
27 M. Schottelius, B. Laufer, H. Kessler and H.-J. Wester,
Ligands for mapping alphavbeta3-integrin expression in vivo,
Acc. Chem. Res., 2009, 42, 969–980.
28 M. A. Dechantsreiter, E. Planker, B. Mathä, E. Lohof, G.
Hölzemann, A. Jonczyk, S. L. Goodman and H. Kessler, N-
Methylated Cyclic RGD Peptides as Highly Active and
Selective αVβ3 Integrin Antagonists, J. Med. Chem., 1999, 42,
3033–3040.
29 C. Mas-Moruno, F. Rechenmacher and H. Kessler,
Cilengitide: the first anti-angiogenic small molecule drug
candidate. Design, synthesis and clinical evaluation, Anti-
Cancer Agents Med. Chem., 2010, 10, 753–768.
30 S. Neubauer, F. Rechenmacher, R. Brimioulle, F. S. Di Leva,
A. Bochen, T. R. Sobahi, M. Schottelius, E. Novellino, C.
Mas-Moruno, L. Marinelli and H. Kessler, Pharmacophoric
Modifications Lead to Superpotent αvβ3 Integrin Ligands
with Suppressed α5β1 Activity, J. Med. Chem., 2014, 57,
3410–3417.
31 C. R. Corbeil, P. Englebienne and N. Moitessier, Docking
ligands into flexible and solvated macromolecules. 1.
Development and validation of FITTED 1.0, J. Chem. Inf.
Model., 2007, 47, 435–449.
42 C. Bolzati, N. Salvarese, D. Carpanese, R. Seraglia, L.
Meléndez-Alafort, A. Rosato, D. Capasso, M. Saviano, A. Del
Gatto, D. Comegna and L. Zaccaro, [99mTc]ijTcIJN)PNP43]-
Labeled RGD Peptides As New Probes for
a Selective
Detection of αvβ 3Integrin: Synthesis, Structure–Activity and
Pharmacokinetic Studies, J. Med. Chem., 2018, 61,
9596–9610.
43 A. N. Flynn, J. Hoffman, D. V. Tillu, C. L. Sherwood, Z.
Zhang, R. Patek, M. N. K. Asiedu, J. Vagner, T. J. Price and S.
Boitano, Development of highly potent protease-activated
This journal is © The Royal Society of Chemistry 2020
RSC Med. Chem.