(t, 3JH–H = 7.32 Hz, 2H, CH2), 2.69 (t, 3JH–H = 7.32 Hz, 2H,CH2),
a Journals Grant for International Authors. Z. L. thanks the
Research Grants Council of Hong Kong for financial support
(HKUST601507). I. A. I. M. thanks the Saudi Arabian Cultural
Attache (London) for a postgraduate scholarship. We thank
Frontier Scientific, Inc., NetChem Inc. and AllyChem Co. Ltd.
for generous gifts of diboron reagents, Mr I. H. McKeag, Mrs
C. F. Heffernan, and Dr A. M. Kenwright for assistance with
some of the NMR spectra, and Mrs J. Dostal for carrying out the
elemental analyses.
1
5.58 (s, 1H, CHBpin); 13C{ H} NMR (126 MHz, C6D6): d 25.14
=
(s, BO2C2(CH3)4), 26.34 (s, CH2), 27.34 (s, CH2), 33.87 (s, CH2),
=
37.39 (s, CH2), 82.64 (s, BO2C2(CH3)4), 110 (s, br, CHBpin),
11
1
=
171.67 (s, C CHBpin); B{ H} NMR(128.4MHz, C6D6): d 30.18
(s, br); MS (EI): m/z (rel. int.): 207 (6) [M+], 192 (8) [M+-Me], 55
(100).
(E)-(MeOC6H4)CH CH(Bneop). 1H NMR (500 MHz,
=
C6D6): d 0.63 (s, 6H, Bneop-CH3), 3.23 (s, 4H, Bneop-CH2), 3.40
3
=
(s, 3H, CH3O), 6.41 (d, JH–H = 18 Hz, 1H, CHBneop), 7.01
3
References
(m, 2H, C6H4), 7.37 (m, 2H, C6H4), 7.79 (d, JH–H = 18 Hz, 1H,
ArCH ); 13C{ H} NMR (126 MHz, C6D6): 21.5 (s, Bneop-CH3),
1
=
1 (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 49; (b) A. Suzuki,
J. Organomet. Chem., 1999, 576, 147.
30.1 (s, Bneop-C(CH3)2), 70.6 (s, Bneop-CH2), 71.9 (s, CH3O),
2 R. W. Hoffmann and B. Landman, Chem. Ber., 1986, 119, 2013.
3 (a) P.-Y. Reynard, Y. Six and J.-Y. Lallemand, Tetrahedron Lett., 1997,
38, 6589; (b) A. Zhang, Y. Kan and B. Jiang, Tetrahedron, 2001, 57,
2305.
4 (a) R. A. Batey, D. B. MacKay and V. Santhakumar, J. Am. Chem.
Soc., 1999, 121, 5075; (b) N. A. Petasis and S. Boral, Tetrahedron Lett.,
2001, 42, 539.
5 J. E. A. Luithle and J. Pietruszka, Liebigs Ann., 1997, 2297.
6 N. He´naff and A. Whiting, Tetrahedron, 2000, 56, 5193.
7 (a) H. C. Brown and S. K. Gupta, J. Am. Chem. Soc., 1975, 97, 5249;
(b) C. F. Lane and G. W. Kabalka, Tetrahedron, 1976, 32, 981.
8 (a) K. Burgess, W. A. van der Donk, S. A. Westcott, T. B. Marder, R. T.
Baker and J. C. Calabrese, J. Am. Chem. Soc., 1992, 114, 9350; (b) K.
Burgess and M. J. Ohlmeyer, Chem. Rev., 1991, 91, 1179; (c) S. Pereira
and M. Srebnik, Organometallics, 1995, 14, 3127; (d) X. He and J. F.
Hartwig, J. Am. Chem. Soc., 1996, 118, 1696; (e) I. Beletskaya and A.
Pelter, Tetrahedron, 1997, 53, 4957; (f) T. Ohmura, Y. Yamamoto and
N. Miyaura, J. Am. Chem. Soc., 2000, 122, 4990.
=
115.9 (s, C6H4), 119.0 (s, br, CHBneop), 128.8, 131.3 (s, C6H4),
1
147.6 (s, ArCH ), 160.5 (s, C6H4); 11B{ H} NMR (96 MHz,
=
C6D6): d 27.1 (s, br); MS (EI) m/z (rel. int.): 256 (100) [M+], 231
(3) [M+-Me].
(E)-PhC(Me) CH(Bneop). 1H NMR (500 MHz, C6D6): d
=
3
=
0.60 (s, 6H, neop-CH3), 2.50 (d, JH–H = 1 Hz, 3H, CH3PhC ),
3.38 (s, 4H, Bneop-CH2), 6.06 (q, 3JH–H = 1 Hz, 1H, CHBneop),
=
7.14 (m, 2H, C6H5), 7.31 (m, 3H, C6H5); 13C{ H} NMR (126 MHz,
1
=
CDCl3): d 21.8 (s, CH3PhC ), 21.9 (s, neop-CH3), 31.6 (s, neop-
=
C(CH3)2), 72.1 (s, neop-CH2), 119.8 (s, br, CHBpin), 126.5,
128.1, 128.5, 143.5 (C6H5), 155.4 (s, MePhC ); 11B{ H} NMR
1
=
(96 MHz, C6D6): d 26.7 (s, br); MS (EI) m/z (rel. int.): 230
(100) [M+], 215 (3) [M+-Me]. The NOESY NMR spectrum shows
correlations consistent with this molecular geometry.
9 (a) K. Takahashi, J. Takagi, T. Ishiyama and N. Miyaura, Chem. Lett.,
2000, 126; (b) T. Ishiyama and N. Miyaura, J. Organomet. Chem., 2000,
611, 392.
10 T. Hata, H. Kitagawa, H. Masai, T. Kurahashi, M. Shimizu and T.
Hiyama, Angew. Chem., 2001, 113, 812, (Angew. Chem., Int. Ed., 2001,
40, 790).
Ph2C CH(Bneop). 1H NMR (500 MHz, C6D6): d 0.58 (s, 6H,
=
=
neop-CH3), 3.21 (s, 4H, neop-CH2), 6.24 (s, 1H, CHBneop),
7.11 (m, 4H, Ph), 7.27 (m, 6H, Ph); 13C{ H} NMR (126 MHz,
1
C6D6): 21.5 (s, neop-CH3), 31.4 (s, neop-CMe2), 71.7 (s, neop-
11 (a) T. Ishiyama, N. Matsuda, N. Miyaura and A. Suzuki, J. Am. Chem.
Soc., 1993, 115, 11018; (b) T. Ishiyama, N. Matsuda, M. Murata, F.
Onazawa, A. Suzuki and N. Miyaura, Organometallics, 1996, 15, 713;
(c) G. Lesley, P. Nguyen, N. J. Taylor, T. B. Marder, A. J. Scott, W.
Clegg and N. C. Norman, Organometallics, 1996, 15, 5137; (d) C. N.
Iverson and M. R. Smith, III, Organometallics, 1996, 15, 5155; (e) R. Ll.
Thomas, F. E. S. Souza and T. B. Marder, J. Chem. Soc., Dalton Trans.,
2001, 1650.
=
CH2), 123.0 (s, br, CHBneop), 127.9, 128.1, 128.4, 130.1, (s, Ph)
1
158.2 (s, Ph2C ); 11B{ H} NMR (96 MHz, C6D6): 26.7 (s, br); MS
=
(EI) m/z (rel. int.): 292 (100) [M+], 277 (3) [M+-Me].
Theoretical studies
Density functional theory calculations at the Becke3LYP (B3LYP)
level have been performed to optimise all of the model species in
which the phosphine ligands were modeled with PH3. Frequency
calculations at the same level of theory have also been performed
to identify all stationary points as minima (zero imaginary
frequencies) or transition states (one imaginary frequency). In the
B3LYP calculations, the Lan2DZ29 basis set was used to describe
Rh, P and Cl, whereas the 6–31G basis set30 was used for C, B, O
and H atoms. Polarisation functions were added for P (fd = 0.34)
and Cl (fd = 0.514).31 All calculations were performed using the
Gaussian 98 package.32
12 T. Ishiyama, S. Momato and N. Miyaura, SYNLETT, 1999, 11, 1790.
13 S.-Y. Onozawa, Y. Hatanaka and M. Tanaka, Chem. Commun., 1999,
1863.
14 T. Ohmura, Y. Yamamoto and N. Miyaura, J. Am. Chem. Soc., 2000,
122, 4990.
15 (a) H. E. Blackwell, D. J. O’Leary, A. K. Chatterjee, R. A. Washenfelder,
D. A. Bussmann and R. H. Grubbs, J. Am. Chem. Soc., 2000, 122, 58;
(b) C. Morrill and R. H. Grubbs, J. Org. Chem., 2003, 68, 6031; (c) C.
Morrill, T. W. Funk and R. H. Grubbs, Tetrahedron Lett., 2004, 45,
7733.
16 (a) B. Marciniec, M. Jankowska and C. Pietraszuk, Chem. Commun.,
2005, 663; (b) K. C. Lam, Z. Lin and T. B. Marder, Organometallics,
2007, 26, 3149.
17 M. Kim and D. Lee, Org. Lett., 2005, 7, 1865.
18 (a) J. M. Brown and G. C. Lloyd-Jones, J. Chem. Soc., Chem.
Commun., 1992, 710; (b) S. A. Westcott, T. B. Marder and R. T. Baker,
Organometallics, 1993, 12, 975; (c) J. M. Brown and G. C. Lloyd-Jones,
J. Am. Chem. Soc., 1994, 116, 866; (d) D. H. Motry and M. R. Smith, III,
J. Am. Chem. Soc., 1995, 117, 6615; (e) R. T. Baker, J. C. Calabrese, S. A.
Westcott and T. B. Marder, J. Am. Chem. Soc., 1995, 117, 8777; (f) D. H.
Motry, A. G. Brazil and M. R. Smith, III, J. Am. Chem. Soc., 1997,
119, 2743; (g) M. Murata, S. Watanabe and Y. Masuda, Tetrahedron
Lett., 1999, 40, 2585; (h) C. M. Vogels, P. G. Hayes, M. P. Shaver and
S. A. Westcott, Chem. Commun., 2000, 51; (i) D. E. Kadlecek, P. J.
Carroll and L. G. Sneddon, J. Am. Chem. Soc., 2000, 122, 10868; (j) M.
Murata, K. Kawakita, T. Asana, S. Watanabe and Y. Masuda, Bull.
Acknowledgements
We thank EPSRC for a postgraduate studentship (R.B.C.) and
for research grants GR/M23038 and GR/R61598 (T.B.M.).
T.B.M. also thanks NSERC (Canada) for research support, the
Leverhulme Trust for a Study Abroad Fellowship, the Hong Kong
University of Science and Technology for a Visiting Professorship,
the University of Durham for a Sir Derman Christopherson
Foundation Fellowship, and the Royal Society of Chemistry for
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 1055–1064 | 1063
©