268
R. Chinchilla et al. / Tetrahedron: Asymmetry 19 (2008) 265–268
Blacker, A. J.; Carta, P.; Clutterbuck, L. A.; North, M.
Tetrahedron 2004, 60, 10433–10447; (c) Belokon’, Y. N.;
Clegg, W.; Harrington, R. W.; Ishibashi, E.; Nomura, H.;
North, M. Tetrahedron 2007, 63, 9724–9740; (d) Chen, S.-K.;
Peng, D.; Zhou, H.; Wang, L.-W.; Chen, F.-X.; Feng, X. Eur.
J. Org. Chem. 2007, 639–644; (e) Lundgren, S.; Wingstrand,
E.; Penhoat, M.; Moberg, C. J. Am. Chem. Soc. 2005, 127,
11592–11593; (f) Belokon’, Y. N.; Ishibashi, E.; Nomura, H.;
North, M. Chem. Commun. 2006, 16, 1775–1777.
5. Li, Q.; Chang, L.; Liu, X.; Feng, X. Synlett 2006, 1675–
1678.
remains unknown. Perhaps a preliminary cyanide anion
interaction takes place with the positively charged ammo-
nium cation, leaving the cyanide close to the activated car-
bonyl. This cyanide anion would arise after the formation
of an acyl triethylammonium species by reaction of the
alkylcyanoformate reagent with triethylamine.2,11 In addi-
tion, the (R)-enantioselectivity of this process is unex-
pected, considering that (R)-cyanoformates have also
been obtained when using the quinidine-derived catalyst 1
which contains an apparent pseudoenantiomeric chiral envi-
ronment. Additional investigation would be necessary to
clarify these points.
6. (a) Wang, W.; Gou, S.; Liu, X.; Feng, X. Synlett 2007, 2875–
2878; (b) Gou, S.; Liu, X.; Zhou, X.; Feng, X. Tetrahedron
2007, 63, 7935–7941.
7. Gou, S.; Chen, X.; Xiong, Y.; Feng, X. J. Org. Chem. 2006,
71, 5732–5736.
8. Belokon, Y. N.; Clegg, W.; Harrington, R. W.; Young, C.;
North, M. Tetrahedron 2007, 63, 5287–5299.
3. Conclusion
We can conclude that dimeric cinchonidine-derived ammo-
nium salt 2a can be used as an efficient and recoverable
organocatalyst in the direct enantioselective cyanoformyla-
tion of aldehydes using methyl cyanoformate as the cya-
nide source in the presence of triethylamine. The final
enantiomerically enriched methyl cyanoformates are
obtained quantitatively in short reaction times without
requiring very low temperatures or anhydrous conditions
and with the lowest catalyst loading employed up to date
for this type of reaction. Further experiments are currently
underway in our laboratory order to determine the origin
of the enantioselection of this reaction.
9. Gou, S.; Wang, J.; Liu, X.; Wang, W.; Chen, F.-X.; Feng, X.
Adv. Synth. Catal. 2007, 349, 343–349.
10. (a) Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M.
Angew. Chem., Int. Ed. 2002, 41, 3636–3638; (b) Yamagiwa,
N.; Tian, J.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc.
2005, 127, 3413–3422.
11. (a) Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195–
6196; (b) Tian, S.-K.; Deng, L. Tetrahedron 2006, 62, 11320–
11330.
12. Peng, D.; Zhou, H.; Liu, X.; Wang, L.; Chen, S.; Feng, X.
Synlett 2007, 2448–2450.
´
´
13. (a) Chinchilla, R.; Mazon, P.; Najera, C. Tetrahedron:
´
Asymmetry 2002, 13, 927–931; (b) Chinchilla, R.; Mazon,
´
P.; Najera, C.; Ortega, F. J. Tetrahedron: Asymmetry 2004,
15, 2603–2607.
´
´
14. Chinchilla, R.; Mazon, P.; Najera, C.; Ortega, F. J.; Yus, M.
Acknowledgements
Arkivoc 2005, 222–232.
´
15. Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584–
We thank the financial support from the Spanish Ministe-
4671.
´
rio de Educacion y Ciencia (projects CTQ 2004-00808/
16. Typical cyanoformylation procedure: A solution of the corre-
sponding aldehyde (0.2 mmol), catalyst 2a (0.002 mmol,
1.7 mg) and Et3N (0.04 mmol, 5.5 lL) dissolved in CH2Cl2
(2 mL) was cooled to 10 °C. Methyl cyanoformate (0.3 mmol,
24 lL) was added and the mixture was stirred vigorously.
After the reaction was completed (GLC), the mixture was
diluted with water (20 mL) and extracted with ethyl acetate
(3 ꢁ 5 mL). The combined organics were dried with MgSO4,
filtered and evaporated in vacuo (15 Torr) to afford crude
products, which were analyzed by 1H NMR (300 MHz)
spectroscopy.
17. Chiral HPLC: Chiralcel OD-H, k = 210 nm, hexane–2-pro-
panol 99:1, 1.0 mL/min; Chiralcel OG, k = 210 nm, hexane–
2-propanol 99:1, 1.0 mL/min; Chiralpak AD, k = 210 nm,
hexane–2-propanol 99:1, 1.0 mL/min. Chiral GLC: Cyclosil-
B, initial temperature 105 °C, flow rate 2.0 °C/min, 9 psi.
Racemic samples were prepared in the absence of 2a: Baeza,
BQU and Consolider Ingenio 2010, CSD2007-00006), the
Generalitat Valenciana (projects CTIOIB/2002/320, GRU-
POS03/134 and GV05/144) and the University of Alicante.
F.J.O. thanks the University of Alicante for a pre-doctoral
fellowship.
References
1. Reviews: (a) North, M. Synlett 1993, 807–820; (b) Effenberg,
F. Angew. Chem., Int. Ed. Engl. 1994, 33, 1555–1563; (c)
Gregory, R. J. H. Chem. Rev. 1999, 99, 3649–3682; (d) North,
M. Tetrahedron: Asymmetry 2003, 14, 147–176; (e) Brunel,
J.-M.; Holmes, I. P. Angew. Chem., Int. Ed. 2004, 43, 2752–
2778; (f) Chen, F.-X.; Feng, X. Curr. Org. Synth. 2006, 3, 77–
´
´
97; (g) Baeza, A.; Sansano, J. M.; Saa, J. M.; Najera, C. Pure
´
A.; Najera, C.; de Gracia Retamosa, M.; Sansano, J. M.
Appl. Chem. 2007, 79, 213–221.
Synlett 2005, 2787–2797.
´
´
2. (a) Casas, J.; Baeza, A.; Sansano, J. M.; Najera, C.; Saa, J. M.
18. The (R)-stereochemistry was assigned by the order of elution
of the corresponding enantiomers in chiral HPLC according
to the literature (Refs. 2b and 12).
Tetrahedron: Asymmetry 2003, 14, 197–200; (b) Baeza, A.;
´
´
Casas, J.; Najera, C.; Sansano, J. M.; Saa, J. M. Eur. J. Org.
Chem. 2006, 1949–1958.
´
´
19. (a) Baeza, A.; Casas, J.; Najera, C.; Sansano, J. M.; Saa, J. M.
´
3. Baeza, A.; Casas, J.; Najera, C.; Sansano, J. M. J. Org. Chem.
Angew. Chem., Int. Ed. 2003, 42, 3143–3146; (b) Baeza, A.;
2006, 71, 3837–3848.
4. (a) Belokon’, Y. N.; Blacker, A. J.; Clutterbuck, L. A.; North,
M. Org. Lett. 2003, 5, 4505–4507; (b) Belokon’, Y. N.;
´
´
Najera, C.; Sansano, J. M.; Saa, J. M. Chem. Eur. J. 2005, 11,
3849–3862.