1746 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 6
Leu et al.
camptothecin, a novel alkaloidal leukemia and tumor inhibitor from
Acuminata. J. Am. Chem. Soc. 1966, 88, 3888–3890.
(2) Hsiang, Y.-H.; Hertzberg, R.; Hecht, S.; Liu, L. F. Camptothecin
induces protein-linked DNA breaks via mammalian DNA topoi-
somerase I. J. Biol. Chem. 1985, 260, 14873–14878.
(3) Kingsbury, W. D.; Boehm, J. C.; Jakas, D. R.; Holden, K. G.; Hecht,
S. M.; Gallagher, G.; Caranfa, M. J.; McCabe, F. L.; Faucette, L. F.;
Johnson, R. K.; Hertzberg, R. P. Synthesis of water-soluble (ami-
noalkyl)camptothecin analogues: inhibition of topoisomerase I and
antitumor activity. J. Med. Chem. 1991, 34, 98–107.
administration of natural product DNA topoisomerase I inhibitors 10-
hydroxycamptothecin and camptothecin in SCID mice bearing human
breast cancer xenografts. Int. J. Oncol. 1997, 10, 1147–1156.
(25) Zhou, J.-J.; Liu, J.; Xu, B. Relationship between lactone ring forms
of HCPT and their antitumor activities. Acta Pharmacol. Sin. 2001,
22, 827–830.
(26) Mattern, M. R.; Hofmann, G. A.; Polsky, R. M.; Funk, L. R.; McCabe,
F. L.; Johnson, R. K. In vitro and in vivo effects of clinically important
camptothecin analogues on multidrug-resistant cells. Oncol. Res. 1993,
5, 467–474.
(4) Sawada, S.; Okajima, S.; Aiyama, R.; Nokata, K.; Furuta, T.;
Yokokura, T.; Sugino, E.; Yamaguchi, K.; Miyasaka, T. Synthesis
and antitumor activity of 20(S)-camptothecin derivatives: carbamate-
linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin.
Chem. Pharm. Bull. 1991, 39, 1446–1450.
(5) Wani, M. C.; Wall, M. E. Plant antitumor agents. II. The structure of
two new alkaloids from Camptotheca acuminata. J. Org. Chem. 1969,
34, 1364–1367.
(27) Wang, Y.; Li, L.; Jiang, W.; Larrick, J. W. Synthesis and evaluation
of a DHA and 10-hydroxycamptothecin conjugate. Bioorg. Med. Chem.
2005, 13, 5592–5599.
(28) Takayama, H.; Watanabe, A.; Hosokawa, M.; Chiba, K.; Satoh, T.;
Aimi, N. Synthesis of a new class of camptothecin derivatives, the
long-chain fatty acid esters of 10-hydroxycamptothecin, as a potent
prodrug candidate, and their in vitro metabolic conversion by
carboxylesterases. Bioorg. Med. Chem. Lett. 1998, 8, 415–418.
(29) Greenwald, R. B.; Pendri, A.; Choe, Y. H. Acyl Polymeric Derivatives
of Aromatic Hydroxyl-Containing Compounds. U.S. Patent 6,011,042,
2000.
(6) Wani, M. C.; Ronman, P. E.; Lindley, J. T.; Wall, M. E. Plant antitumor
agents. 18. Synthesis and biological activity of camptothecin analogues.
J. Med. Chem. 1980, 23, 554–560.
(7) Kawato, Y.; Aonuma, M.; Hirota, Y. Intracellular roles of SN-38, a
metabolite of the camptothecin derivative CPT-11, in the antitumor
effect of CPT-11. Cancer Res. 1991, 51, 4187–4191.
(8) Ahmed, F.; Vyas, V.; Cornfield, A.; Goodin, S.; Ravikumar, T. S.;
Rubin, E. H.; Gupta, E. In vitro activation of irinotecan to SN-38 by
human liver and intestine. Anticancer Res. 1999, 19, 2067–2071.
(9) Leu, Y.-L.; Roffler, S. R.; Chern, J.-W. Design and synthesis of water-
soluble glucuronide derivatives of camptothecin for cancer prodrug
monotherapy and antibody-directed enzyme prodrug therapy (ADEPT).
J. Med. Chem. 1999, 42, 3623–3628.
(10) Paigen, K. Mammalian beta-glucuronidase: genetics, molecular biol-
ogy, and cell biology. Prog. Nucleic Acid Res. Mol. Biol. 1989, 37,
155–205.
(11) Bosslet, K.; Straub, R.; Blumrich, M.; Czech, J.; Gerken, M.; Sperker,
B.; Kroemer, H. K.; Gesson, J.-P.; Koch, M.; Monneret, C. Elucidation
of the mechanism enabling tumor selective prodrug monotherapy.
Cancer Res. 1998, 58, 1195–1201.
(12) Bosslet, K.; Czech, J.; Hoffmann, D. A novel one-step tumor-selective
prodrug activation system. Tumor Targeting 1995, 1, 45–50.
(13) Chen, X.; Wu, B.; Wang, P. G. Glucuronides in anti-cancer therapy.
Curr. Med. Chem.: Anti-Cancer Agents 2003, 3, 139–150.
(14) Alaoui, A. E.; Saha, N.; Schmidt, F.; Monneret, C.; Florent, J.-C. New
Taxol (paclitaxel) prodrugs designed for ADEPT and PMT strategies
in cancer chemotherapy. Bioorg. Med. Chem. 2006, 14, 5012–5019.
(15) Skwarczynski, M.; Hayashi, Y.; Kiso, Y. Paclitaxel prodrugs: toward
smarter delivery of anticancer agents. J. Med. Chem. 2006, 49, 7253–
7269.
(16) Wei, G.; Loktionova, N. A.; Pegg, A. E.; Moschel, R. C. ꢀ-Glucu-
ronidase-cleavable prodrugs of O6-benzylguanine and O6-benzyl-2′-
deoxyguanosine. J. Med. Chem. 2005, 48, 256–261.
(17) Prijovich, Z. M.; Chen, B.-M.; Leu, Y.-L.; Chern, J.-W.; Roffler, S. R.
Anti-tumour activity and toxicity of the new prodrug 9-aminocamp-
tothecin glucuronide (9ACG) in mice. Br. J. Cancer 2002, 86, 1634–
1638.
(18) Prijovich, Z. M.; Leu, Y.-L.; Roffler, S. R. Stability of the new prodrug
9-aminocamptothecin glucuronide (9ACG) in the presence of human
serum albumin. Biochem. Pharmacol. 2003, 66, 1181–1187.
(19) Prijovich, Z. M.; Leu, Y.-L.; Roffler, S. R. Effect of pH and human
serum albumin on the cytotoxicity of a glucuronide prodrug of
9-aminocamptothecin. Cancer Chemother. Pharmacol. 2007, 60, 7–
17.
(20) Chen, K.-C.; Cheng, T.-L.; Leu, Y.-L.; Prijovich, Z. M.; Chuang, C.-
H.; Chen, B.-M.; Roffler, S. R. Membrane-localized activation of
glucuronide prodrugs by ꢀ-glucuronidase enzymes. Cancer Gene Ther.
2007, 14, 187–200.
(21) Wall, M. E.; Wani, M. C.; Nicholas, A. W.; Manikumar, G.; Tele,
C.; Moore, L.; Truesdale, A.; Leitner, P.; Besterman, J. M. Plant
antitumor agents. 30. Synthesis and structure activity of novel
camptothecin analogs. J. Med. Chem. 1993, 36, 2689–2700.
(22) Ling, Y. H.; Andersson, B. S.; Nelson, J. A. DNA topoisomerase I as
a site of action for 10-hydroxycamptothecin in human promyelocytic
leukemia cells. Cancer Biochem. Biophys. 1990, 11, 23–30.
(23) Han, R. Highlight on the studies of anticancer drugs derived from
plants in China. Stem Cells 1994, 12, 53–63.
(30) He, X.; Lu, W.; Jiang, X.; Cai, J.; Zhang, X.; Ding, J. Synthesis and
biological evaluation of bis and monocarbonate prodrugs of 10-
hydroxycamptothecins. Bioorg. Med. Chem. 2004, 12, 4003–4008.
(31) Toki, B. E.; Cerveny, C. G.; Wahl, A. F.; Senter, P. D. Protease-
mediated fragmentation of p-amidobenzyl ethers: a new strategy for
the activation of anticancer prodrugs. J. Org. Chem. 2002, 67, 1866–
1872.
(32) Haisma, H. J.; van Muijen, M.; Pinedo, H. M.; Boven, E. Comparison
of two anthracycline-based prodrugs for activation by a monoclonal
antibody-ꢀ-glucuronidase conjugate in the specific treatment of
cancer. Cell Biophys. 1994, 24–25, 185–192.
(33) Florent, J. C.; Dong, X.; Gaudel, G.; Mitaku, S.; Monneret, C.; Gesson,
J. P.; Jacquesy, J. C.; Mondon, M.; Renoux, B.; Andrianomenjanahary,
S.; Michel, S.; Koch, M.; Tillequin, F.; Gerken, M.; Czech, J.; Straub,
R.; Bosslet, K. Prodrugs of anthracyclines for use in antibody-directed
enzyme prodrug therapy. J. Med. Chem. 1998, 41, 3572–3581.
(34) Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphos-
phine in synthesis and transformation of natural products. Synthesis
1981, 1–28.
(35) Duimstra, J. A.; Femia, F. J.; Meade, T. J. A gadolinium chelate for
detection of ꢀ-glucuronidase: a self-immolative approach. J. Am. Chem.
Soc. 2005, 127, 12847–12855.
(36) Tosin, M.; Murphy, P. V. Synthesis of R-glucuronic acid and amide
derivatives in the presence of a participating 2-acyl protecting group.
Org. Lett. 2002, 4, 3675–3678.
(37) Fassberg, J.; Stella, V. J. A kinetic and mechanistic study of the
hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 1992,
81, 676–684.
(38) De Graaf, M.; Boven, E.; Scheeren, H. W.; Haisma, H. J.; Pinedo,
H. M. Beta-glucuronidase-mediated drug release. Curr. Pharm. Des.
2002, 8, 1391–1403.
(39) Wang, R.; Gao, Y.; Lai, L. Calculating partition coefficient by atom-
additive method. Perspect. Drug DiscoVery Des. 2000, 19, 47–66.
(40) Angenault, S.; Thirot, S.; Schmidt, F.; Monneret, C.; Pfeiffer, B.;
Renard, P. Cancer chemotherapy: a SN-38 (7-ethyl-10-hydroxycamp-
tothecin) glucuronide prodrug for treatment by a PMT (prodrug
monotherapy) strategy. Bioorg. Med. Chem. Lett. 2003, 13, 947–950.
(41) Jain, S.; Drendel, W. B.; Chen, Z. W.; Mathews, F. S.; Sly, W. S.;
Grubb, J. H. Structure of human ꢀ-glucuronidase reveals candidate
lysosomal targeting and active-site motifs. Nat. Struct. Biol. 1996, 3,
375–381.
(42) Katu, K.; Yoshida, K.; Tsukannto, H. Synthesis of p-nitrophenyl ꢀ-D-
glucopyranosiduronic acid and its utilization as a substrate for the assay
of ꢀ-glucuronidase activity. Chem. Pharm. Bull. 1960, 8, 239–242.
(43) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and validation of a genetic algorithm for flexible docking.
J. Mol. Biol. 1997, 267, 727–748.
(44) Islam, M. R.; Tomatsu, S.; Shah, G. N.; Grubb, J. H.; Jain, S.; Sly,
W. S. Active site residues of human ꢀ-glucuronidase. Evidence for
Glu540 as the nucleophile and Glu451 as the acid-base residue. J. Biol.
Chem. 1999, 274, 23451–23455.
(45) Geddie, M. L.; Matsumura, I. Rapid evolution of ꢀ-glucuronidase
specificity by saturation mutagenesis of an active site loop. J. Biol.
Chem. 2004, 279, 26462–26468.
(24) Zhang, R.; Cai, Q.; Lindsey, J. R.; Li, Y.; Chambless, B.; Naguib,
F. N. M. Antitumor activity and pharmacokinetics following oral
JM701151C