310
References
1. (a) Van Boeckel, C. A. A.; Petitou, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 1671–1818. (b) Ornitz, D. M.; Herr, A. B.;
Nilsson, M.; Westman, J.; Svahn, C. M.; Waksman, G. Science 1995, 268, 432–436. (c) Petitou, M.; Hérault, J. P.; Bernat,
A.; Driguez, P. A.; Duchaussoy, P.; Lormeau, J. C.; Herbert, J. M. Nature 1999, 398, 417–422. (d) Lortat-Jacob, H.; Turnbull,
J. E.; Grimaud, J. A. Biochem. J. 1995, 310, 497–505.
2. (a) Macher, I.; Dax, K.; Wanek, E.; Weidmann, H. Carbohydr. Res. 1980, 80, 45–51. (b) Jacquinet, J. C.; Petitou, M.;
Duchaussoy, P.; Lederman, I.; Choay, J.; Torri, G.; Sinaÿ, P. Carbohydr. Res. 1984, 130, 183–193. (c) Baggett, N.; Samra,
A. K. Carbohydr. Res. 1984, 127, 149–153. (d) Medakovic, D. Carbohydr. Res. 1994, 253, 299–300. (e) Dromowicz, M.;
Köll, P. Carbohydr. Res. 1998, 308, 169–171. (f) Hinou, H.; Kurosawa, H.; Matsuoka, K.; Terunuma, D.; Kuzuhara, H.
Tetrahedron Lett. 1999, 40, 1511–1504, and references cited therein. (g) Adinolfi, M.; Barone, G.; De Lorenzo, F.; Iadonisi,
A. Synlett 1999, 336–338. (f) Ojeda, R.; de Paz, J. L.; Martin-Lomas, M.; Lassaletta, J. M. Synlett 1999, 1316–1318.
3. (a) Horton, D.; Swanson, F. O. Carbohydr. Res. 1970, 14, 159–171. (b) Horton, D.; Tsai, J. H. Carbohydr. Res. 1977, 58,
89–108.
4. Danishefsky, S. J.; DeNinno, M. P.; Philips, G. B.; Zelle, R. E.; Lartey, P. A. Tetrahedron 1986, 42, 2809–2819.
5. Von dem Bussche-Hünnefeld, J. L.; Seebach, D. Tetrahedron 1992, 48, 5719–5730.
6. Seyferth, D.; Weiner, M. A. J. Am. Chem. Soc. 1961, 83, 3583–3585.
7. The D-gluco isomer 4a corresponds to the non-chelated Felkin–Ahn product (Table 1 entry 8 and Ref. 4) but, in the absence
of chelating agent, the change in stereoselectivity observed with divinylzinc or vinyllithium may be explained by a preferred
chelation of zinc or lithium with the aldehyde carbonyl and the C3 oxygen instead of the endocyclic oxygen.
8. Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49,
3904–3912.
9. Ramanathan, V.; Levine, R. J. Org. Chem. 1962, 27, 1216–1219.
10. Seebach, D. Angew. Chem., Int. Ed. Engl. 1967, 6, 442–443.
11. In addition to steric effects, the exceptional diastereoselectivity observed in the addition of (PhS)3CLi may also take its
source in the presence of the sulfur atoms which may promote the formation of a complex between the two reactants.
12. A solution of tris-(phenylthio)methane (2.635 g, 7.74 mmol, 1.2 equiv.) in 10 mL dry THF was cooled to −78°C and n-
butyllithium (5 mL of 1.4 M solution in hexane, 7.09 mmol, 1.1 equiv.) was added. The mixture was kept under stirring at
−78°C for 1 h 30 min and then a solution of 1.8 g aldehyde 2 (6.45 mmol) in 10 mL dry THF was added dropwise. After 1 h
at −78°C and warming to room temperature, the reaction was quenched with 50 mL aqueous saturated NH4Cl solution. The
aqueous phase was extracted with Et2O (3×50 mL), the combined organic phases were washed with brine (50 mL), dried
over MgSO4 and concentrated in vacuo. The residue was purified by silica gel flash chromatography, eluting first the excess
tris-(phenylthio)methane with AcOEt/petroleum ether 10/90 and then 3c with AcOEt/ CH2Cl2 20/80, giving 3.7 g (5.93
mmol, 92%) which may be recrystallized from AcOEt/ petroleum ether 20/80 : mp 110°C. 1H NMR (250 MHz, CDCl3, ref.
TMS) δ 7.730–7.650 (m, 6H, Ph), 7.380–7.190 (m, 12H, Ph), 7.110–7.030 (m, 2H, Ph), 6.004 (d, 1H, J=3.5 Hz, H1), 4.805
(dd, 1H, J=3.5, 2.5 Hz, H4), 4.525 (d, 1H, J=3.5, H2), 4.492 (d, 1H, J=12.0 Hz, CH2Ph), 4.220 (dd, 1H, J=7.0, 2.5 Hz, H5),
4.215 (d, 1H, J=12.0 Hz, CH2Ph), 3.604 (d, 1H, J=3.5 Hz, H3), 3.280 (d, 1H, J=6.5 Hz, OH), 1.496 and 1.323 (2s, 6H,
CMe2). 13C NMR (62.9 MHz) δ: 136.9–136.5, 131.3, 129.1–127.6 (arom.), 112.1 (CMe2), 104.1 (C1), 83.0/81.8 (C4/C5),
79.9 (C(SPh)3), 77.7 (C2), 72.8 (C3), 27.1/26.5 (CMe2). Anal. calcd for C34H34O5S3: C, 65.99; H, 5.54; O, 12.93; S, 15.54.
Found: C, 65.71; H, 5.56; O, 13.23; S, 15.32. [α]3D2=13 (CHCl3, 1.1). IR (KBr) : 3525 cm−1 (νOH); 3047 cm−1 (νCH arom).
13. For the vinyl derivatives 3a and 4a the diastereomeric ratio was determined using peaks at δ 116.86/115.75 (_CH2; L-
ido/D-gluco); 111.69/111.48 (CMe2 L-ido/D-gluco); 104.93/104.80 (C1; D-gluco/L-ido). For the 2-furyl derivatives 3b and
4b, signals at δ 107.49/107.31 and 66.07/65.64 were used, the stereochemistry of the major product being ascertained after
ozonolysis (Schmidt, G.; Fukuyama, T.; Akaska, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259–261) and methylation with
diazomethane which gave compound 5. For the tris-phenylthio product 4c, only one stereomer was detected by 1H and 13
C
NMR.