Fig. 3 Supramolecular architecture of 2b due to C–Hꢀ ꢀ ꢀF intermolecular H-bonds as specified by dotted lines. Meso-aryl rings which are not
involved in hydrogen bonding are omitted for clarity.
CCDC 663304. For crystallographic data in CIF or other electronic
atoms are in the range of 2.69 to 2.82 A, which positions them
format see DOI: 10.1039/b715553k
within the range of a non-bonded interaction (van der Waals
radius for fluorine is 1.47 A).
1 (a) T. Olsson, D. Tanner, B. Thulin and O. Wenneerstrom,
In conclusion, we have devised a simple and ring-size
selective one-pot synthesis of benzene incorporated macro-
cycles 1 and 2. The extended delocalization of the macrocycle,
2, has a profound effect on the benzene aromaticity, thereby
complying the 6p arene ring current to be a part of the 30p
macrocyclic diatropic ring current. Therefore, one of the two
phenylene rings in 2 should exist in quinoid form to sustain the
30p (4n + 2 rule) aromaticity. To the best of our knowledge, 2
represents the first such example of having a quinoid form for
benzene in a p-conjugated macrocycle.
The authors thank Dr Raja Roy, SAIF–Lucknow, India for
NMR data and Dr Babu Varghese, SAIF–IIT–Madras, India
for crystallographic analysis. Funding from DST, New Delhi,
India and SRF for J. S. R. from CSIR, New Delhi, India, is
acknowledged.
Tetrahedron, 1981, 37, 3491; (b) K. Mullen, H. Unterberg, W.
Huber, O. Wennerstrom, O. Norinder, D. Tanner and B. Thulin, J.
Am. Chem. Soc., 1986, 106, 7514.
2 (a) J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003, 42,
5134; (b) T. D. Lash, Angew. Chem., Int. Ed., 2000, 39, 1763; (c) T.
K. Chandrashekar and S. Venkatraman, Acc. Chem. Res., 2003,
36, 676.
3 J. Kromer, I. Rios-Carreras, G. Fuhrmann, C. Musch, M. Wun-
derlin, T. Debaerdemaeker, E. Mena-Osteritz and P. Bauerle,
Angew. Chem., Int. Ed., 2000, 39, 3481.
4 (a) M. Stepien and L. Latos-Grazynski, J. Am. Chem. Soc., 2002,
124, 3838; (b) M. Stepien and L. Latos-Grazynski, Acc. Chem.
Res., 2005, 38, 88; (c) M. Stepien, L. Latos-Grazynski, N. Sprutta,
P. Chwasisz and L. Szterenberg, Angew. Chem., Int. Ed., 2007, 46,
7869.
5 C. H. Lee and W. S. Cho, Bull. Korean Chem. Soc., 1998, 19, 314.
6 R. M. Silverstein and F. X. Webster, Spectrometric Identification of
Organic Compounds, Wiley India, New Delhi, India, 6th edn, 2006,
ch. 4, pp. 209–210.
7 The torsion angle C1–C34–C31–C32 is ꢃ16.61, while the corre-
sponding value of the other side C9–C10–C11–C12 is 6.61 which
shows more non-planarity of the moiety about the C31–C34 bond
than that of the C10–C11 bond. This also indicates a more single
bond nature of the C31–C34 bond.
8 V. R. Thalladi, H. C. Weiss, D. Blaser, R. Boese, A. Nangia and G.
R. Desiraju, J. Am. Chem. Soc., 1998, 120, 8702.
9 N. Ramasubbu, R. Parthasarathy and P. Murray-Rust, J. Am.
Chem. Soc., 1986, 108, 4308.
Notes and references
z Crystals were grown by slow evaporation of n-hexane into a chloro-
form solution of 2b. Crystallographic data of 2b: C70H22F24S4, Mr =
1447.15, monoclinic, space group P21/c, a = 19.7374(4), b =
19.0689(4), c = 22.0885(5) A, b = 114.818(10)1, V = 7544.6(3) A3,
Z = 4, Dc = 1.589 g cmꢃ3, T = 173 K, R1 = 0.0720, wR2 = 0.1932.
ꢂc
This journal is The Royal Society of Chemistry 2008
1328 | Chem. Commun., 2008, 1326–1328