2206 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 7
Stukenbrock et al.
with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab.
2003, 88, 2300–2308.
(10) Wang, T.; Bonner-Weir, S.; Oates, P.; Chulak, M.; Simon, B.; Merlino,
G.; Schmidt, E.; Brand, S. Pancreatic gastrin stimulates islet dif-
ferentiation of transforming growth factor alpha-induced ductular
precursor cells. J. Clin. InVest. 1993, 92, 1349–1356.
(11) Rooman, I.; Bouwens, L. Combined gastrin and epidermal growth
factor treatment induces islet regeneration and restores normoglycaemia
in C57Bl6/J mice treated with alloxan. Diabetologia 2004, 47, 259–
265.
(12) Suarez-Pinzon, W.; Yan, Y.; Power, R.; Brand, S.; Rabinovitch, A.
Combination therapy with epidermal growth factor and gastrin
increases beta-cell mass and reverses hyperglycemia in diabetic NOD
mice. Diabetes 2005, 54, 2596–2601.
temperature, the mixture was poured into water (20 mL). The
precipitate was separated by filtration and washed with petrol ether
and water.
6-Oxo-5,6,7,12-tetrahydropyrido[3′,2′:2,3]azepino[4,5-b]indole-
9-carbonitrile (Cazpaullone) (2b). Preparation of 2b was either
accomplished according to general procedure B or D. Preparation
according to general procedure B from 10b (260 mg, 0.89 mmol)
yielded 18% of a brown powder, mp >330 °C. 1H NMR δ 3.76 (s,
2H, azepine-CH2), 7.46 (dd, 1H, 8.2/4.5 Hz, ArH), 7.53 (dd, 1H,
8.5/1.5 Hz, ArH), 7.62 (dd, 1H, 8.5/0.5 Hz, ArH), 7.65 (dd, 1H,
8.2/1.4 Hz, ArH), 8.38 (s, 1H, ArH), 8.51 (dd, 1H, 4.5/1.4 Hz,
ArH), 10.34 (s, 1H, NH), 12.30 (s, 1H, NH); (C16H10N4O) HRMS
(EI) (m/z) [M+] calcd 274.0855, found 274.0174. Preparation
according to general procedure D from 10b (29 mg, 0.10 mmol)
(13) A Study in Type 2 Diabetic Patients with Repeated Doses of E1 in
Combination with G1; Identifier NCT00239187; U.S. National Institute
1
yielded 36% of a brown powder. H NMR data were consistent
(14) Larsen, C.; Faulenbach, M.; Vaag, A.; Vølund, A.; Ehses, J.; Seifert,
B.; Mandrup-Poulsen, T.; Donath, M. Interleukin-1-receptor antagonist
in type 2 diabetes mellitus. N. Engl. J. Med. 2007, 356, 1517–1526.
(15) Boucher, M.; Selander, L.; Carlsson, L.; Edlund, H. Phosphorylation
marks IPF1/PDX1 protein for degradation by glycogen synthase kinase
3-dependent mechanisms. J. Biol. Chem. 2006, 281, 6395–6403.
(16) Mussmann, R.; Geese, M.; Harder, F.; Kegel, S.; Andag, U.; Lomow,
A.; Burk, U.; Onichtchouk, D.; Dohrmann, C.; Austen, M. Inhibition
of GSK3 promotes replication and survival of pancreatic beta cells.
J. Biol. Chem. 2007, 282, 12030–12037.
(17) Srinivasan, S.; Ohsugi, M.; Liu, Z.; Fatrai, S.; Bernal-Mizrachi, E.;
Permutt, M. A. Endoplasmic reticulum stress-induced apoptosis is
partly mediated by reduced insulin signaling through phosphatidyli-
nositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in
mouse insulinoma cells. Diabetes 2005, 54, 968–975.
with the data obtained for 2b prepared by general procedure B.
9-Bromo-7,12-dihydropyrido[4′,3′:2,3]azepino[4,5-b]indol-
6(5H)-one (13a). Preparation according to general procedure C from
9b (56 mg, 0.32 mmol), (4-bromophenyl)hydrazine hydrochloride
(78.1 mg, 0.35 mmol), and sodium acetate (28.6 mg, 0.35 mmol)
1
afforded 20% of a gray solid, mp >330 °C. H NMR δ 3.66 (s,
2H, azepine-CH2), 7.19 (d, 1H, 5.5 Hz, ArH), 7.31 (dd, 1H, 8.6/
1.9 Hz, ArH), 7.42 (d, 1H, 8.6 Hz, ArH), 7.96 (d, 1H, 1.8 Hz,
ArH), 8.45 (d, 1H, 5.5 Hz, ArH), 8.92 (s, 1H, ArH), 10.53 (s, 1H,
NH), 11.96 (s, 1H, NH); (C15H10BrN3O) HRMS (EI) (m/z) [M+]
calcd 327.0007, found 326.9990.
9-Bromo-5,7-dihydro-6H-[1]benzofuro[3,2-d][1]benzazepin-
6-one (24b). Preparation according to general procedure G from
23b (104 mg, 0.30 mmol) yielded 38% of a gray solid, mp >330
°C. 1H NMR (DMSO-d6 + TFA, 600 MHz) δ 3.69 (s, 2H, azepine-
CH2), 7.30–7.34 (m, 2H, ArH), 7.46–7.49 (m, 1H, ArH), 7.54 (dd,
1H, 8.7/2.0 Hz, ArH), 7.65 (d, 1H, 8.6 Hz, ArH), 7.87 (dd, 1H,
7.8/1.4 Hz, ArH), 8.12 (d, 1H, 2.0 Hz, ArH), 10.41 (s, 1H, NH).
Anal. (C16H10BrNO2) C, H, N.
(18) Woodgett, J. R. Molecular cloning and expression of glycogen synthase
kinase 3/factor A. EMBO J. 1990, 9, 2431–2438.
(19) Elghazi, L.; Rachdi, L.; Weiss, A.; Cras-Méneur, C.; Bernal-Mizrachi,
E. Regulation of beta-cell mass and function by the Akt/protein kinase
B signalling pathway. Diabetes Obes. Metab. 2007, 9 (Suppl. 2), 147–
57.
(20) Rulifson, I.; Karnik, S.; Heiser, P.; ten Berge, D.; Chen, H.; Gu, X.;
Taketo, M.; Nusse, R.; Hebrok, M.; Kim, S. Wnt signaling regulates
pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2007,
104, 6247–6252.
Acknowledgment. We thank Dr. Ursula Hoffmann for
critical reading of the manuscript. The work was supported by
a grant from the German Ministry of Education and Research
(BMBF, BioProfil “Funktionelle Genomanalyse”, Grant
0313348A, to DeveloGen AG).
(21) Benbow, J.; Helal, C.; Kung, D.; Wager, T. Glycogen synthase kinase-3
(GSK-3): a kinase with exeptional therapeutic potential. Annu. Rep.
Med. Chem. 2005, 40, 135–147.
(22) Cohen, P.; Goedert, M. GSK3 inhibitors: development and therapeutic
potential. Nat. ReV. Drug DiscoVery 2004, 3, 479–487.
(23) Frame, S.; Zheleva, D. Targeting glycogen synthase kinase-3 in insulin
signalling. Expert Opin. Ther. Targets 2006, 10, 429–444.
(24) Meijer, L.; Flajolet, M.; Greengard, P. Pharmacological inhibitors of
glycogen synthase kinase-3. Trends Pharmacol. Sci. 2004, 25, 471–
480.
(25) Kunick, C.; Lauenroth, K.; Wieking, K.; Xie, X.; Schultz, C.; Gussio,
R.; Zaharevitz, D.; Leost, M.; Meijer, L.; Weber, A.; Jorgensen, F. S.;
Lemcke, T. Evaluation and comparison of 3D-QSAR CoMSIA models
for CDK1, CDK5, and GSK-3 inhibition by paullones. J. Med. Chem.
2004, 47, 22–36.
(26) Leost, M.; Schultz, C.; Link, A.; Wu, Y.-Z.; Biernat, J.; Mandelkow,
E.-M.; Bibb, J. A.; Snyder, G. L.; Greengard, P.; Zaharevitz, D. W.;
Gussio, R.; Senderowicz, A. M.; Sausville, E. A.; Kunick, C.; Meijer,
L. Paullones are potent inhibitors of glycogen synthase kinase-3ꢀ and
cyclin-dependent kinase 5/p25. Eur. J. Biochem. 2000, 267, 5983–
5994.
Supporting Information Available: Details for the synthesis
of 6a-c, 7b,c, 8b,c, 9b,c, 10b-j,n-o, 11a-c, 2a,c-o, 13b-f,
15a-e, 16a-c, 23a-c, 24a,c, 26, 29, 30, spectroscopic data, HPLC
purity data, and data from elemental analyses. This material is
References
(1) Zimmet, P.; Alberti, K. G. M. M.; Shaw, J. Global and societal
implications of the diabetes epidemic. Nature 2001, 414, 782–787.
(2) King, H.; Aubert, R. E.; Herman, W. H. Global burden of diabetes,
1995–2025 prevalence, numerical estimates, and projections. Diabetes
Care 1998, 21, 1414–1431.
(3) Nathan, D. Finding new treatments for diabetesshow many, how fast.
.how good. N. Engl. J. Med. 2007, 356, 437–440.
(27) Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J. A.; Snyder,
G. L.; Greengard, P.; Biernat, J.; Wu, Y.-Z.; Mandelkow, E.-M.;
Eisenbrand, G.; Meijer, L. Indirubins inhibit glycogen kinase-3ꢀ and
CDK5/p25, two protein kinases involved in abnormal tau phospho-
rylation in Alzheimer’s disease. J. Biol. Chem. 2001, 276, 251–260.
(28) Meijer, L.; Skaltsounis, A.-L.; Magiatis, P.; Polychronopoulos, P.;
Knockaert, M.; Leost, M.; Ryan, X. P.; Vonica, C. A.; Brivanlou, A.;
Dajani, R.; Crovace, C.; Tarricone, C.; Musacchio, A.; Roe, S. M.;
Pearl, L.; Greengard, P. GSK-3-selective inhibitors derived from tyrian
purple indirubins. Chem. Biol. 2003, 10, 1255–1266.
(29) Polychronopoulos, P.; Magiatis, P.; Skaltsounis, A. L.; Myriantho-
poulos, V.; Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S. M.;
Pearl, L.; Leost, M.; Greengard, P.; Meijer, L. Structural basis for the
synthesis of indirubins as potent and selective inhibitors of glycogen
synthase kinase-3 and cyclin-dependent kinases. J. Med. Chem. 2004,
47, 935–946.
(4) The Diabetes Control and Complications Trial Research Group. The
effect of intensive treatment of diabetes on the development and
progression of long-term complications in insulin-dependent diabetes
mellitus. N. Engl. J. Med. 1993, 329, 977–986.
(5) U.K. Prospective Diabetes Study Group. Tight blood pressure control
and risk of macrovascular and microvascular complications in type 2
diabetes: UKPDS 38. Br. Med. J. 1998, 317, 703–713.
(6) Meier, J.; Bhushan, A.; Butler, A.; Rizza, R.; Butler, P. Sustained
beta cell apoptosis in patients with long-standing type 1 diabetes:
indirect evidence for islet regeneration. Diabetologia 2005, 48, 2221–
2228.
(7) Sherry, N.; Tsai, E.; Herold, K. Natural history of beta-cell function
in type 1 diabetes. Diabetes 2005, 54 (Suppl. 2), 32–39.
(8) Butler, A.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.; Butler,
P. Beta-cell deficit and increased beta-cell apoptosis in humans with
type 2 diabetes. Diabetes 2003, 52, 102–110.
(9) Yoon, K.; Ko, S.; Cho, J.; Lee, J.; Ahn, Y.; Song, K.; Yoo, S.; Kang,
M.; Cha, B.; Lee, K.; Son, H.; Kang, S.; Kim, H.; Lee, I.; Bonner-
Weir, S. Selective beta-cell loss and alpha-cell expansion in patients
(30) Coghlan, M. P.; Culbert, A. A.; Cross, D. A. E.; Corcoran, S. L.;
Yates, J. D.; Pearce, N. J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.;
Cox, L. R.; Mills, D.; Brown, M. J.; Haigh, D.; Ward, R. W.; Smith,