3. Prat, A.; Parker, J. S.; Karginova, O.; Fan, C.; Livasy, C.;
Herschkowitz, J. I. Breast Cancer Res. 2010, 12, R68.
4. Eroles, P.; Bosch, A.; Pérez-Fidalgo, J. A.; Lluch, A. Cancer Treat.
Rev. 2012, 38, 698.
5. The Cancer Genome Atlas Network. Nature 2012, 490, 61.
6. Gayle, S. S.; Sahni, J. M.; Webb, B. M.; Weber-Bonk, K. L.;
Shively, M. S.; Spina, R.; Bar, E. E.; Summers, M. K.; Keri, R. A.
J. Biol. Chem. 2019, 294, 875.
7. Rakha, E. A.; Reis-Filho, J. S.; Ellis, I. O. J. Clin. Oncol. 2008, 26,
2568.
8. Reis-Filho, J. S.; Tutt, A. N. J. Histopathology 2008, 52, 108.
9. Polyak, K. J. Clin. Invest. 2011, 121, 3786.
10. Lehmann, B. D.; Bauer, J. A.; Chen, X.; Sanders, M. E.;
Chakravarthy, A. B.; Shyr, Y.; Pietenpol, J. A. J. Clin. Invest. 2011,
121, 2750.
11. Kalimutho, M.; Parsons, K.; Mittal, D.; López, J. A.; Srihari, S.;
Khanna, K. K. Trends Pharmacol. Sci. 2015, 36, 822.
12. Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E.; Gianni,
L. Nat. Rev. Clin. Oncol. 2016, 13, 674.
13. Cheang, M. C. U.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.;
Chia, S. K.; Perou, C. M.; Nielsen, T. O. Clin. Cancer Res. 2008,
14, 1368.
14. Corkery, B.; Crown, J.; Clynes, M.; O’Donovan, N. Ann. Oncol.
2009, 20, 862.
15. Glynn, S. A.; Boersma, B. J.; Dorsey, T. H.; Yi, M.; Yfantis, H. G.;
Ridnour, L. A.; Martin, D. N.; Switzer, C. H.; Hudson, R. S.; Wink,
D. A.; Lee, D. H.; Stephens, R. M.; Ambs, S. J. Clin. Invest. 2010,
120, 3843.
16. Ueno, N. T.; Zhang, D. J. Cancer 2011, 2, 324.
17. Tomao, F.; Papa, A.; Zaccarelli, E.; Rossi, L.; Caruso, D.; Minozzi,
M.; Vici, P.; Frati, L.; Tomao, S. OncoTargets Ther. 2015, 8, 177.
18. Crown, J.; O’Shaughnessy, J.; Gullo, G. Ann. Oncol. 2012, 23, vi56.
19. Sergina, N. V.; Rausch, M.; Wang, D.; Blair, J.; Hann, B.; Shokat,
K. M.; Moasser, M. M. Nature 2007, 445, 437.
20. Meyer, A. S.; Miller, M. A.; Gertler, F. B.; Lauffenburger, D. A.
Sci. Signaling 2013, 6, ra66.
21. Sohn, J.; Liu, S.; Parinyanitikul, N.; Lee, J.; Hortobagyi, G. N.;
Mills, G. B.; Ueno, N. T.; Gonzalez-Angulo, A. M. J. Cancer 2014,
5, 745.
22. Bianco, R.; Shin, I.; Ritter, C. A.; Yakes, F. M.; Basso, A.; Rosen,
N.; Tsurutani, J.; Dennis, P. A.; Mills, G. B.; Arteaga, C. L.
Oncogene 2003, 22, 2812.
23. Oliveras-Ferraros, C.; Vazquez-Martin, A.; López-Bonet, E.;
Martín-Castillo, B.; Del Barco, S.; Brunet, J.; Menendez, J. A. Int.
J. Oncol. 2008, 33, 1165.
24. Lion, C. J.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. J.
Med. Chem. 2005, 48, 1292.
25. Mandal, S.; Bérubé, G.; Asselin, É.; Richardson, V. J.; Church, J.
G.; Bridson, J.; Pham, T. N. Q.; Pramanik, S. K.; Mandal, S. K.
Bioorg. Med. Chem. Lett. 2007, 17, 2139.
suggestion that the activity of the 2-anilinopyrimidine analogs is
strongly dependent on lipophilicity.29
Subsequently, we turned our attention to the analysis of the
anti-TNBC activities for cyclohexyl analogs 31-40. The results in
Table 2 show that all compounds had a GI50 value below 30 µM
against the TNBC cell line, except for 33. In particular, analogs 35
and 37-40 recorded single-digit GI50 values (2.5-5.6 µM) on the
MDA-MB-468 cells, which all indicated an improved potency
compared to that of the compound 1 (GI50 = 6.5 µM). Especially,
compound 38, which possesses a 4-chloropiperidinyl group on
part A and cyclohexyl group on part B, showed the highest activity
with a GI50 of 2.5 µM. Furthermore, the SI of the compound (>12),
which was approximately three times higher than that of the 1 (SI
= 4.2), was also the highest in the series. Meanwhile, substitution
of the acyclic amine on part A, as seen in analog 40, resulted in a
compound with the highest toxicity against the TNBC cells at a
concentration of 10 µM and an approximately 2-fold increase in
potency (GI50 = 3.3 µM) over that of 1. However, the selectivity
on the TNBC cells was moderate. This result is similar to the
finding observed with compounds possessing a diethylamino
group on part A in our previous study.29 Interestingly, the indolyl
compound 32 showed low TNBC inhibitory activity with a GI50
value of 23.5 µM. This result is contrary to the observations that
part A-indolyl compounds (10-12 and 16) were generally highly
potent. This implies that increasing the lipophilicity above a
certain level has a negative effect on the desired activity. In
addition, the overall effect of the part B methoxy group (21-30)
and cyclohexyl group (31-40) compounds suggest hydrophobic
interactions between the part B substituent of 2-anilinopyrimidines
and their potential target.
In summary, we expanded our 2-anilinopyrimidine-based
selective inhibitors of the TNBC cell line using two derivatization
strategies. The first strategy was designed to introduce aromaticity
on the part A. The part A-aromatized series maintained their
activities against the TNBC cells, while their potency on the
luminal type breast cancer cells increased dramatically. The
second strategy was focused on the modification of the piperidine
at part B. Substitution of the cyclohexyl group on part B improved
the activity against the TNBC cell line. In particular, the
cyclohexyl compound 38, possessing a 4-chloropiperidinyl group
on the part A, showed the highest activity and selectivity against
the TNBC cells. The results from the optimization study will guide
us in further refining the structure of 2-anilinopyrimidines and
identify the target of the MDA-MB-468 selective inhibitors.
26. Weldon, D. J.; Saulsbury, M. D.; Goh, J.; Rowland, L.; Campbell,
P.; Robinson, L.; Miller, C.; Christian, J.; Amis, L.; Taylor, N.; Dill,
C.; Davis Jr, W.; Evans, S. L.; Brantley, E. Bioorg. Med. Chem. Lett.
2014, 24, 3381.
27. Kim, Y. J.; Pyo, J. S.; Jung, Y.-S.; Kwak, J.-H. Bioorg. Med. Chem.
Lett. 2017, 27, 607.
Acknowledgments
28. Yamashita, N.; Kondo, M.; Zhao, S.; Li, W.; Koike, K.; Nemoto,
K.; Kanno, Y. Bioorg. Med. Chem. Lett. 2017, 27, 2608.
29. Jo, J.; Kim, S. H.; Kim, H.; Jeong, M.; Kwak, J.-H.; Han, Y. T.;
Jeong, J.-Y.; Jung, Y.-S.; Yun, H. Bioorg. Med. Chem. Lett. 2019,
29, 62.
This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-
2018R1D1A1B07045101) and the Bio & Medical Technology
Development Program of the National Research Foundation (NRF)
funded by the Korean government (MSIT) (NRF-
2017M3A9G7072568).
A. Supplementary data
References
1. Foulkes, W. D.; Smith, I. E.; Reis-Filho, J. S. N. Engl. J. Med. 2010,
363, 1938.
2. Prat, A.; Perou, C. M. Mol. Oncol. 2011, 5, 5.