Free Radical-Mediated Aryl Amination
this structural diversity has stimulated a wide range of methods
aimed at the stereoselective construction12-14 or functionaliza-
tion15 of indoline rings. Few of these methods comprise
enantioselective annulation methodssperhaps an indication that
even modern methods remain inadequate for building certain
common chiral heterocycles.16
We have considered the indoline annulation problem our-
selves and recently reported an enantioselective indoline annu-
lation in two steps, leading to enantioenriched 2-substituted
indolines.13 The first step of the sequence is an enantioselective
phase-transfer-catalyzed glycine Schiff base alkylation.17 Free
radical-mediated aryl amination immediately follows as an
enabling technology in this context, as it delivers the 2-substi-
tuted indoline under mild conditions and in protected form for
further manipulation. We have since pursued a variation on this
(9) Selected total syntheses: Woodward, R. B.; Cava, M. P.; Ollis, W.
D.; Hunger, A.; Daeniker, H. U.; Schenker, K. J. Am. Chem. Soc. 1954,
76, 4749. Rawal, V. H.; Iwasa, S. J. Org. Chem. 1994, 59, 2685. Kuehne,
M. E.; Xu, F. J. Org. Chem. 1993, 58, 7490. Knight, S. D.; Overman, L.
E.; Pairaudeau, G. J. Am. Chem. Soc. 1993, 115, 9293. Magnus, P.; Giles,
M.; Bonnert, R.; Kim, C. S.; Mcquire, L.; Merritt, A.; Vicker, N. J. Am.
Chem. Soc. 1992, 114, 4403.
(10) Gruenfeld, N.; Stanton, J. L.; Yuan, A. M.; Ebetino, F. H.; Browne,
L. J.; Gude, C.; Huebner, C. F. J. Med. Chem. 1983, 26, 1277. See also:
Natesh, R.; Schwager, S. L. U.; Evans, H. R.; Sturrock, E. D.; Acharya, K.
R. Biochemistry 2004, 43, 8718. Smith, C. G.; Vane, J. R. FASEB J. 2003,
17, 788.
(11) Reddy, P. T.; Quevillon, S.; Gan, Z. H.; Forbes, N.; Leek, D. M.;
Arya, P. J. Comb. Chem. 2006, 8, 856. Gan, Z.; Reddy, P. T.; Quevillon,
S.; Couve-Bonnaire, S.; Arya, P. Angew. Chem., Int. Ed. 2005, 44, 1366.
(12) Asymmetric Heck cyclizations (generally limited to cyclic or 1,1-
disubstituted olefins, although exceptions exist): (a) Sato, Y.; Sodeoka,
M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738. (b) Carpenter, N. E.;
Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846. (c) Donde,
Y.; Overman, L. E. Catalytic Asymmetric Synthesis, 2nd ed.; Wiley: New
York, 2000.
(13) (a) Johnston, J. N.; Plotkin, M. A.; Viswanathan, R.; Prabhakaran,
E. N. Org. Lett. 2001, 3, 1009. (b) Viswanathan, R.; Prabhakaran, E. N.;
Plotkin, M. A.; Johnston, J. N. J. Am. Chem. Soc. 2003, 125, 163. (c)
Srinivasan, J. M.; Burks, H. E.; Smith, C. R.; Viswanathan, R.; Johnston,
J. N. Synthesis 2005, 330.
FIGURE 1. Indoline annulation via two- and three-component
couplings and free radical-mediated aryl amination.
theme that targets the 2,3-disubstituted indoline ring system but
retains the convergency offered by the basic modular assembly
beginning from a glycine Schiff base. We report a convergent
synthesis of 2,3-disubstituted indolines (Figure 1, type I, eq 1)
resulting from a straightforward sequence involving conjugate
addition and free radical-mediated aryl amination. Additional
modularity can be obtained by slight operational change to
incorporate a third component (Figure 1, type II, eq 2) by
judicious choice of Michael acceptor. Both incarnations utilize
the phase-transfer-catalyzed Michael addition of a protected
glycine Schiff base to activated styrene derivatives.17-19 The
key annulation step is effected by a free radical reaction in which
an aryl radical adds (nonconventionally) to the nitrogen of the
azomethine.13,20-23
Results and Discussion
Type I: [3 + 2] Indoline Annulation via Sequential
Michael Addition/Free Radical-Mediated Aryl Amination.
A variety of Michael acceptors were synthesized from o-
bromobenzaldehyde by olefination with the appropriate Wittig
reagent.24 A 6:1 E:Z ratio of (inseparable) geometric isomers
of ethyl cinnamate 1a25 was exposed to glycine Schiff base 226
(14) Bailey, W. F.; Mealy, M. J. J. Am. Chem. Soc. 2000, 122, 6787.
(15) For enantioselective functionalization of indoles (hydrogenation),
see: (a) Wagaw, S.; Rennels, R. A.; Buchwald, S. L. J. Am. Chem. Soc.
1997, 119, 8451. (b) Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito,
Y. J. Am. Chem. Soc. 2000, 122, 7614.
(16) Additional indoline annulations: Deboves, H. J. C.; Hunter, C.;
Jackson, R. F. W. J. Chem. Soc., Perkin Trans. 1 2002, 733. Ganton, M.
D.; Kerr, M. A. Org. Lett. 2005, 7, 4777. Smith, A. B.; Kurti, L.; Davulcu,
A. H. Org. Lett. 2006, 8, 2167. Yip, K. T.; Yang, M.; Law, K. L.; Zhu, N.
Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130. Zhang, L. M. J. Am.
Chem. Soc. 2005, 127, 16804.
(18) Alvarezibarra, C.; Csaky, A. G.; Maroto, M.; Quiroga, M. L. J.
Org. Chem. 1995, 60, 6700.
(17) Reviews: O’Donnell, M. J. Aldrichimica Acta 2001, 34, 3. Albanese,
D. Mini-ReV. Org. Chem. 2006, 3, 195. Almasi, D.; Alonso, D. A.; Najera,
C. Tetrahedron: Asymmetry 2007, 18, 299. Ooi, T.; Maruoka, K. Angew.
Chem., Int. Ed. 2007, 46, 4222. Additional leading references: O’Donnell,
M. J.; Delgado, F.; Dominguez, E.; de Blas, J.; Scott, W. L. Tetrahedron:
Asymmetry 2001, 12, 821. O’Donnell, M. J.; Boniece, J. M.; Earp, S. E.
Tetrahedron Lett. 1978, 19, 2641. O’Donnell, M. J.; Eckrich, T. M.
Tetrahedron Lett. 1978, 19, 4625. Patterson, D. E.; Xie, S. P.; Jones, L.
A.; Osterhout, M. H.; Henry, C. G.; Roper, T. D. Org. Process Res. DeV.
2007, 11, 624. Park, H. G.; Jeong, B. S.; Yoo, M. S.; Lee, J. H.; Park, M.
K.; Lee, Y. J.; Kim, M. J.; Jew, S. S. Angew. Chem., Int. Ed. 2002, 41,
3036. Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526. Ooi, T.; Kameda,
M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519. O’Donnell, M. J.;
Delgado, F.; Hostettler, C.; Schwesinger, R. Tetrahedron Lett. 1998, 39,
8775. Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595. Lygo,
B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518. Jew, S. S.; Yoo, M. S.;
Jeong, B. S.; Park, I. Y.; Park, H. G. Org. Lett. 2002, 4, 4245. Corey, E. J.;
Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414. Andrus, M. B.;
Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2006, 71, 8651.
Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem.
2005, 70, 9470. Andrus, M. B.; Christiansen, M. A.; Hicken, E. J.; Gainer,
M. J.; Bedke, D. K.; Harper, K. C.; Mikkelson, S. R.; Dodson, D. S.; Harris,
D. T. Org. Lett. 2007, 9, 4865.
(19) Additional selected references: Ma, B.; Parkinson, J. L.; Castle, S.
L. Tetrahedron Lett. 2007, 48, 2083. Mettath, S.; Srikanth, G. S. C.;
Dangerfield, B. S.; Castle, S. L. J. Org. Chem. 2004, 69, 6489. Castle, S.
L.; Srikanth, G. S. C. Org. Lett. 2003, 5, 3611.
(20) Prabhakaran, E. N.; Nugent, B. M.; Williams, A. L.; Nailor, K. E.;
Johnston, J. N. Org. Lett. 2002, 4, 4197. Nugent, B. M.; Williams, A. L.;
Prabhakaran, E. N.; Johnston, J. N. Tetrahedron 2003, 59, 8877.
(21) (a) Takano, S.; Suzuki, M.; Kijima, A.; Ogasawara, K. Chem. Lett.
1990, 315. (b) Takano, S.; Suzuki, M.; Ogasawara, K. Heterocycles 1994,
37, 149. (c) Tomaszewski, M. J.; Warkentin, J. Tetrahedron Lett. 1992,
33, 2123. (d) Tomaszewski, M. J.; Warkentin, J.; Werstiuk, N. H. Aust. J.
Chem. 1995, 48, 291.
(22) (a) Bowman, W. R.; Stephenson, P. T.; Terrett, N. K.; Young, A.
R. Tetrahedron Lett. 1994, 35, 6369. (b) Bowman, W. R.; Stephenson, P.
T.; Terrett, N. K.; Young, A. R. Tetrahedron 1995, 51, 7959. (c) McClure,
C. K.; Kiessling, A. J.; Link, J. S. Tetrahedron 1998, 54, 7121. (d) Orito,
K.; Uchiito, S.; Satoh, Y.; Tatsuzawa, T.; Harada, R.; Tokuda, M. Org.
Lett. 2000, 2, 307.
(23) Reviews of carbon radical additions to azomethine derivatives:
Friestad, G. K. Tetrahedron 2001, 57, 5461. Friestad, G. K.; Mathies, A.
K. Tetrahedron 2007, 63, 2541.
(24) Deschamp, B.; Lefebvre, G.; Redjal, A.; Seydenpenne, J. Tetrahe-
dron 1973, 29, 2437.
J. Org. Chem, Vol. 73, No. 8, 2008 3041