Yin et al.
Paal-Knorr12 reaction (cyclocondensation of 1,4-dicarbonyl
compounds) is still the most frequently used for the synthesis
of these five-membered heterocycles.
SCHEME 1
Sulfur-containing aromatics are attractive candidates for
organic semiconductors13 and can act as unique coordination
compounds for electronic, magnetic, and optical materials.14
Many 3-thio-substituted furan derivatives (such as thioethers 1
and 2, Scheme 1) have been identified in coffee and cooked
beef.15 In addition, alkylthio-substituted heterocycles are par-
ticularly attractive intermediates that have found widespread
usage in organic synthesis. They can undergo a variety of
reactions16,17 including addition/elimination, nickel-catalyzed
Grignard coupling, Michael additions, ortho-metalation, acid
SCHEME 2
(5) (a) Lee, C. F.; Yang, L. M.; Hwu, T. Y.; Feng, A. S.; Tseng, J. C.; Luh,
T. Y. J. Am. Chem. Soc. 2000, 122, 4992. and references cited therein. (b) Tour,
J. M. Acc. Chem. Res. 2000, 33, 791. (c) Bunz, U. H. F. Chem. ReV. 2000, 100,
1605. (d) Groenendaal, L.; Meijere, E. W.; Vekemans, J. A. J. M. In Electronic
Materials: The Oligomer Approach; Müllen, K., Wegner, G., Eds.; Wiley-VCH:
Weinheim, Germany, 1998. (e) Domingo, V. M.; Aleman, C.; Brillas, E.; Julia,
L. J. Org. Chem. 2001, 66, 4058. (f) Liu, C. Y.; Luh, T. Y. Org. Lett. 2002, 4,
4305.
hydrolysis to butenolides, [4 + 2]-cycloaddition reactions, and
the Liebeskind-Srogl reaction.18 Although many synthetic
procedures are available for their formation,19 most of the
existing methods often require harsh conditions and are fre-
quently based on the use of a preexisting heterocycle.
The formation of carbon-carbon bonds is central to organic
synthesis because it provides the carbon skeleton that defines
the structure and function of an organic compound. Although
many excellent methods have been published, the direct
carbon-carbon bond-forming reaction between two sp3 C-H
bonds is still a challenge.20 Recently, we reported a carbon-
carbon double-bond-forming reaction for the preparation of
2-methylthio-substituted 1,4-diketones from readily available
(hetero)aryl methyl ketones (Scheme 2),21 which is a novel
carbon-carbon double-bond-forming reaction between the sp3
C-H bonds of two methyl groups. This is also a simple,
effective, and interesting approach to the 1,4-diketones compared
with the previously reported methods22 and an attractive way
to introduce the methylthio group into these molecules from
inexpensive dimethyl sulfoxide. In this paper, the scope of the
substrates is extended to other heteroaryl methyl ketones and
the reaction mechanism is further confirmed via cross-coupling
reactions. In addition, the Paal-Knorr cyclization reactions of
these 1,4-diketones to give methylthio-substituted furans, pyr-
roles, and thiophenes and their derivatives have been investi-
gated. These have been found to proceed in good yield.
(6) (a) Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R., Eds. Handbook
of Conducting Polymers, 2nd ed.; Marcell Dekker: NewYork, 1998. (b) Higgins,
S. J. Chem. Soc. ReV. 1997, 26, 247.
(7) (a) Yoon, D. W.; Hwang, H.; Lee, C. H. Angew. Chem., Int. Ed. 2002,
41, 1757. (b) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int.
Ed. 2001, 40, 2382. (c) Miyaji, H.; Sato, W.; Sessler, J. L. Angew. Chem., Int.
Ed. 2000, 39, 1777.
(8) (a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076. (b) Brown, R. C. D.
Angew. Chem., Int. Ed. 2005, 44, 850. (c) Cacchi, S. J. Organomet. Chem. 1999,
576, 42. (d) Keay, B. A. Chem. Soc. ReV. 1999, 28, 209. (e) Hou, X. L.; Cheung,
H. Y.; Hon, T. Y.; Kwan, P. L.; Ho, T. H.; Tong, S. Y.; Wong, H. N. C.
Tetrahedron 1998, 54, 1955.
(9) For some recent references on the synthesis of furans, see: (a) Sasaki,
S.; Adachi, K.; Yoshifuji, M. Org. Lett. 2007, 9, 1729. (b) Oueslati, F.; Perrio,
C.; Dupas, G.; Barre, L. Org. Lett. 2007, 9, 153. (c) Xu, L.; Huang, X.; Zhong,
F. Org. Lett. 2006, 8, 5061. (d) Xu, B.; Hammond, G. B. J. Org. Chem. 2006,
71, 3518. (e) Mross, G.; Holtz, E.; Langer, P. J. Org. Chem. 2006, 71, 8045. (f)
Duan, X.; Liu, X.; Guo, L.; Liao, M.; Liu, W.; Liang, Y. J. Org. Chem. 2005,
70, 6980. (g) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126,
11164. (h) Stauffer, F.; Neier, R. Org. Lett. 2000, 2, 3535.
(10) For some recent references on the synthesis of pyrroles, see: (a) Misra,
N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1246. (b) Huang,
X.; Shen, R.; Zhang, T. J. Org. Chem. 2007, 72, 1534. (c) Galliford, C. V.;
Scheidt, K. A. J. Org. Chem. 2007, 72, 1811. (d) St. Cyr, D. J.; Martin, N.;
Arndtsen, B. A. Org. Lett. 2007, 9, 449. (e) Harrison, T. J.; Kozak, J. A.; Corbella-
Pane, M.; Dake, G. R. J. Org. Chem. 2006, 71, 4525. (f) Zanatta, N.; Schneider,
J. M. F. M.; Schneider, P. H.; Wouters, A. D.; Bonacorso, H. G.; Martins,
M. A. P.; Wessjohann, L. A. J. Org. Chem. 2006, 71, 6996. (g) Lu, L.; Chen,
G.; Ma, S. Org. Lett. 2006, 8, 835. (h) Binder, J. T.; Kirsch, S. F. Org. Lett.
2006, 8, 2151. (i) Hiroya, K.; Matsumoto, S.; Ashikawa, M.; Ogiwara, K.;
Sakamoto, T. Org. Lett. 2006, 8, 5349. (j) Crawley, M. L.; Goljer, I.; Jenkins,
D. J.; Mehlmann, J. F.; Nogle, L.; Dooley, R.; Mahaney, P. E. Org. Lett. 2006,
8, 5837. (k) Michailovski, A.; Grunwaldt, J. D.; Baiker, A.; Kiebach, R.; Bensch,
W.; Patzke, G. R. Angew. Chem., Int. Ed. 2005, 44, 5644. (l) Balme, G. Angew.
Chem., Int. Ed. 2004, 43, 6238. (m) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett.
2004, 6, 2465. (n) Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126,
468. (o) Yu, M.; Pagenkopf, B. L. Org. Lett. 2003, 5, 5099. (p) Gabriele, B.;
Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68, 7853. and references cited therein.
(q) Smith, N. D.; Huang, D.; Cosford, N. D. P. Org. Lett. 2002, 4, 3537. (r)
Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074.
(11) For some recent references on the synthesis of thiophenes, see: (a)
Shindo, M.; Yoshimura, Y.; Hayashi, M.; Soejima, H.; Yoshikawa, T.;
Matsumoto, K.; Shishido, K. Org. Lett. 2007, 9, 1963. (b) Gabriele, B.; Salerno,
G.; Fazio, A. Org. Lett. 2000, 2, 351.
Results and Discussion
Homocoupling of aryl methyl ketones in the presence of
iodine, copper(II) oxide, and dimethyl sulfoxide affords 2-me-
(16) Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674. and
references cited therein.
(17) Padwa, A.; Eidell, C. K.; Ginn, J. D.; McClure, M. S. J. Org. Chem.
2002, 67, 1595. and references cited therein.
(18) (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260. (b)
Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3, 91.
(19) (a) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.
2003, 42, 98. (b) Antolini, L.; Goldoni, F.; Iarossi, D.; Mucci, A.; Schenetti, L.
J. Chem. Soc., Perkin Trans. 1 1997, 1957.
(12) For recent examples of Paal-Knorr synthesis, see: (a) Trost, B. M.;
Doherty, G. A. J. Am. Chem. Soc. 2000, 122, 3801. (b) Braun, R. U.; Zeitler,
K.; Muller, T. J. J. Org. Lett. 2001, 3, 3297. (c) Kiryanov, A. A.; Sampson, P.;
Seed, A. J. J. Org. Chem. 2001, 66, 7925. (d) Quiclet-Sire, B.; Quintero, L.;
Sanchez-Jimenez, G.; Zard, S. Z. Synlett 2003, 75. (e) Minetto, G.; Raveglia,
L. F.; Taddei, M. Org. Lett. 2004, 6, 389. (f) Banik, B. K.; Samajdar, S.; Banik,
I. J. Org. Chem. 2004, 69, 213. (g) Banik, B. K.; Banik, I.; Renteria, M.;
Dasgupta, S. K. Tetrahedron Lett. 2005, 46, 2643.
(20) (a) Zhang, Y. H.; Li, C. J. Eur. J. Org. Chem. 2007, 4654. (b) Li, Q.;
Wei, Y.; Hao, J.; Zhu, Y.; Wang, L. J. Am. Chem. Soc. 2007, 129, 5810. (c) Li,
Z.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 56. (d) Li, Z. P.; Bohle, D. S.; Li,
C. J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928. (e) Baran, P. S.; DeMartino,
M. P. Angew. Chem., Int. Ed 2006, 45, 7083. (f) Li, Z. P.; Li, C. J. Eur. J. Org.
Chem. 2005, 3173. (g) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672.
(21) (a) Yin, G.; Zhou, B.; Meng, X.; Wu, A.; Pan, Y. Org. Lett. 2006, 8, 2245.
(b) Yin, G.; Gao, M.; She, N.; Hu, S.; Wu, A.; Pan, Y. Synthesis 2007, 3113.
(22) (a) Xue, S.; Li, L. Z.; Liu, Y. K.; Guo, Q. X. J. Org. Chem. 2006, 71,
215. (b) Yuguchi, M.; Tokuda, M.; Orito, K. J. Org. Chem. 2004, 69, 908. (c)
Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126,
2314. (d) Yamamoto, Y.; Maekawa, H.; Goda, S.; Nishiguchi, I. Org. Lett. 2003,
5, 2755. (e) Yasuda, M.; Tsuji, S.; Shibata, I.; Baba, A. J. Org. Chem. 1997, 62,
8282. (f) Stetter, H. Angew. Chem., Int. Ed 1976, 15, 639.
(13) Kobayashi, K.; Shimaoka, R.; Kawahata, M.; Yamanaka, M.; Yamagu-
chi, K Org. Lett. 2006, 8, 2385. and references cited therein.
(14) (a) Awaleh, M. O.; Badia, A.; Brisse, F. Inorg. Chem. 2007, 46, 3185.
(b) Reddinger, J. L.; Reynolds, J. R. J. Org. Chem. 1996, 61, 4833. and references
cited therein.
(15) (a) Huber, U. A.; Bergamin, D. HelV. Chim. Acta 1993, 76, 2528. (b)
Tressl, R.; Silwar, R. J. Agric. Food Chem. 1981, 29, 1078.
3378 J. Org. Chem. Vol. 73, No. 9, 2008