S. K. Nandy et al. / Tetrahedron Letters 49 (2008) 2469–2471
2471
Table 3
Tetrahydrofuran synthesis
References and notes
Substratea
Product
Yieldb
(%)
1. Hou, X.-L.; Yang, Z.; Wong, H. N. C. Prog. Heterocycl. Chem. 2002,
14, 139–179.
2. (a) Alali, F. Q.; Liu, X.-X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62,
504–540; (b) Zafra-Polo, M. C.; Figadere, B.; Gallardo, T.; Tormo, J.
R.; Cortes, D. Phytochemistry 1998, 48, 1087–1117.
3. (a) Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407; (b) Polyether
Antibiotics: Naturally Occurring Acid Ionophores; Westley, J. W., Ed.;
M. Dekker: New York, 1982; Vols. 1 and 2.
4. Ward, R. S. Nat. Prod. Rep. 1999, 16, 75–96.
5. (a) Nicorta, F. Top. Curr. Chem. 1997, 187, 55–83; (b) Postema, M. H.
D. Tetrahedron 1992, 48, 8545–8599.
6. (a) Elliot, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301–2323; (b)
Harmanage, J. C.; Figadere, B. Tetrahedron: Asymmetry 1993, 4,
1711–1754.
7. (a) Semmelhack, M. F.; Bodurow, C. J. Am. Chem. Soc. 1984, 106,
1496–1498; (b) Hay, M. B.; Hadrin, A. R.; Wolfe, J. P. J. Org. Chem.
2005, 70, 3099–3107 and references cited therein.
OBn O
OH
O
O
O
83
88
79
BnO
HO
HO
24
21
OBn O
OH
OH
O
O
O
O
BnO
25
22
OBn O
H
O
H
O
8. Rao, H. S. P.; Reedy, K. S. Tetrahedron Lett. 1994, 35, 171.
9. Ram, S.; Ehrenkaufer, R. E. Synthesis 1988, 91–95.
BnO
HO
26
23
10. (a) Anwer, M. K.; Spatola, A. F. Synthesis 1980, 929 and later
publications; (b) Adger, B. M.; O’Farrell, C.; Lewis, N. J.; Mitchell,
M. B. Synthesis 1987, 53; (c) Carpino, L.; Tunga, A. J. Org. Chem.
1986, 11, 1930; (d) Ram, S.; Ehrenkaufer, R. E. Synthesis 1986, 133;
(e) Overman, L. E.; Sugai, S. Helv. Chim. Acta 1985, 68, 745. For a
review see: (f) Ranu, B. C.; Sarkar, A.; Guchhait, S. K.; Ghosh, K. J.
Ind. Chem. Soc. 1998, 75, 690. CTH reaction with polymer-supported
formats, see: (g) Basu, B.; Bhuiyan, Md. M. H.; Das, P.; Hossain, I.
Tetrahedron Lett. 2003, 44, 8931–8934.
11. (a) Albright, J. D.; Howell, C. F.; Sum, F. W. Heterocycles 1993, 35,
737–754; (b) Albright, J. D.; Howell, C. F. U.S. Patent 5,459,131,
1991; (c) Sharma, A.; Kumar, V.; Sinha, A. K. Adv. Synth. Catal.
2006, 348, 354–360.
Conditions: a Chalcone derivatives were synthesized by aldol condensation
reaction following the known procedures with benzyl protected
acetophenone and corresponding substituted furaldehyde.
b
In all cases, yield was obtained after column purifications.
carbon double bond reductions along with complete reduc-
tion of furan ring were observed in all cases and sensitive
functionalities like ketones were unaffected under this
condition.13
In summary, the ammonium formate/Pd–C system
proved to be very efficient and versatile for the one-step
reduction of unsaturated furan derivatives to saturated
tetrahydrofuran derivatives wherein the sensitive func-
tional group such as the keto group remains intact. The
reaction workup procedure was very simple and the prod-
ucts were easily obtained in excellent yield without the need
for high pressure equipment and explosive hydrogen gas.
Application of this newly developed methodology and the
asymmetric version of this reaction are under active
investigations.
12. All the compounds gave satisfactory spectroscopic data. Data for the
selected compounds are given below: 9: 1H NMR (CDCl3, 300 MHz):
d 7.39–7.32 (m, 3H), 6.92–6.87 (m, 2H), 6.31 (dd, J1 = 2.1 Hz,
J2 = 3.3 Hz, 1H), 6.11 (dt, J1 = 2.4 Hz, J2 = 0.6 Hz, 1H), 5.76 (s, 1H),
3.80 (s, 3H); 13: 1H NMR (CDCl3, 300 MHz): d 7.27 (d, J = 8.1 Hz,
2H), 6.86 (d, J = 9.0 Hz, 2H), 4.81 (d, J = 2.1 Hz, 1H), 4.05–3.95 (m,
1H), 3.91–3.83 (m, 1H), 3.82–3.71 (m, 4H), 2.85 (s, 1H), 1.90–1.70 (m,
3H), 1.70–1.51 (m, 1H); 13C NMR (CDCl3, 75 MHz): d 159.128 (1C),
133.156 (1C), 127.519 (2C), 113.873 (2C), 83.418 (1C), 74.091(1C),
69.157 (1C), 55.446 (1C), 26.212 (1C), 25.338 (1C), 14: 1H NMR
(CDCl3, 300 MHz): d 7.28 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 9.0 Hz,
2H), 4.37 (d, J = 7.5 Hz, 1H), 4.03–3.92 (m, 1H), 3.92–3.81 (m, 1H),
3.81–3.71 (m, 4H), 3.17 (s, 1H), 1.92–1.70 (m, 2H), 1.70–1.49 (m, 2H);
13C NMR (CDCl3, 75 MHz): d 159.524 (1C), 133.102 (1C), 128.420
(2C), 113.988 (2C), 83.780 (1C), 76.820 (1C), 68.619 (1C), 55.465 (1C),
28.154 (1C), 26.261 (1C).
Acknowledgments
13. Reduction of chalcone to saturated alcohol, see: (a) Andrade, C. K.
Z.; Silvia, W. A. Lett. Org. Chem. 2006, 3, 39–41. Reduction of a,b-
unsaturated ketones to saturated ketones, see: (b) Ahamed, N.; Lier,
J. E. V. J. Chem. Res. 2006, 584–585; (c) Berthold, H.; Schotten, T.;
Hong, H. Synthesis 2002, 1607–1610.
We are pleased to acknowledge Danielle Berry and
Catherine Maurseth for NMR spectra, Jifu Zhao for Mass
spectra.