1924
Organometallics 2008, 27, 1924–1928
Synthesis and Characterization of Pyrrole-imine [N-NP] Nickel(II)
and Palladium(II) Complexes and Their Applications to Norbornene
Polymerization
Fu-Bin Han,† Yu-Liang Zhang, Xiu-Li Sun,* Bao-Guo Li,† Yang-Hui Guo, and
Yong Tang*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences, 354 Fenglin Lu, Shanghai, 200032, China
ReceiVed December 29, 2007
Ni(II) and Pd(II) complexes based on N-((1H-pyrrol-2-yl)methylene)-2-(diphenylphosphino)benzenamine
were synthesized and characterized. X-ray diffraction studies on complexes 1, 2, and 4 revealed that N,
N, P, and halogen atoms coordinated to metal, with distorted square planar geometries in all cases. Upon
treatment with modified methylaluminoxane (MMAO), the [N-NP]Ni(II)X complexes are robust and exhibit
high activity for the vinyl addition polymerization of norbornene (up to 5.46 × 107 g PNB/mol(Ni) · h · atm).
affording vinyl-addition polymers with molecular weights higher
than 106 g/mol.4 Of the Ni(II) and Pd(II) precatalysts developed,2–5
most are involved in bidentate ligand-derived complexes. A few
complexes based on tridentate ligands were reported for this
purpose except limited examples related to oligomerization of
ethylene.4a,g,n,5 Of them, Braunstein et al. described that a [NPN]
nickel complex could be used to promote oligomerization of
ethylene with a TOF up to 37 900 in the presence of 6 equiv of
AlEtCl2.5a Carpentier and Casagrande et al. documented that
tridentate pyrazolyl nickel complexes were highly efficient
catalysts for the dimerization of ethylene with a selectivity up
to 92% for the 1-butene fraction.5b Several 2,6-bis(imino)py-
ridine nickel complexes were synthesized.5c,d These nickel
complexes either proved to be inert to ethylene polymerization
or showed low activity (5 × 103 g/mol(Ni) · h · atm) for the
dimerization of ethylene. As our ongoing research project on
synthesis and applications of metal complexes based on triden-
tate ligands in asymmetric synthesis6 and olefin
polymerization,7very recently, we designed and synthesized
N-((1H-pyrrol-2-yl)-
Introduction
During the last decades, there have been tremendous advances
in the field of homogeneous late-transition metal catalysts for
olefin polymerization.1 For example, the families of nickel and
palladium complexes,2–4 such as those based on R-diimine2a or
salicylaldimine,2b,2c have proven to be one of the most efficient
precatalysts. In the presence of MMAO, R-diimine nickel and
palladium complexes could catalyze the polymerization of
ethylene or propylene with high activities to give linear to highly
branched or even to dendritic polymers.2a,e,3c,d Palladium
complexes could promote the copolymerization of ethylene with
polar comonomers such as methyl acrylate effectively.2d,f,g,3a,b,e,f
Salicylaldiminato nickel(II) complexes were reported to poly-
merize ethylene in the presence of functional additives.2c
Recently, some nickel and palladium complexes were also found
to be highly active for the polymerization of norbornene,
* To whom correspondence should be addressed. E-mail: xlsun@
mail.sioc.ac.cn or tangy@mail.sioc.ac.cn.
† College of Chemistry and Chemical Engineering, Inner Mongolia
University, Huhhot, 010021, Inner Mongolia, China.
methylene)-2-(diphenylphosphino)benzenamine (L1) and the cor-
(1) For recent reviews, see: (a) Britovsek, G. J. P.; Gibson, V. C.; Wass,
D. F. Angew. Chem., Int. Ed. 1999, 38, 428. (b) Ittel, S. D.; Johnson, L. K.;
Brookhart, M. Chem. ReV 2000, 100, 1169. (c) Mecking, S. Angew. Chem.,
Int. Ed. 2001, 40, 534. (d) Janiak, C.; Lassahn, P. G. J. Mol. Catal. A:
Chem. 2001, 166, 193. (e) Bianchini, C.; Giambastiani, G.; Rios, I. G.;
Mantovani, G.; Meli, A.; Segarra, A. M. Coord. Chem. ReV. 2006, 250,
1391. (f) Janiak, C.; Lassahn, P.-G.; Lozan, V. Macromol. Symp. 2006,
236, 88. (g) Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. ReV. 2007,
107, 1745.
(4) (a) Sacchi, M. C.; Sonzogni, M.; Losio, S.; Forlini, F.; Locatelli, P.;
Tritto, I.; Licchelli, M. Macromol. Chem. Phys. 2001, 202, 2052. (b)
Lassahn, P.-G.; Janiak, C.; Oh, J.-S. Macromol. Rapid Commun. 2002, 23,
16. (c) Lee, B. Y.; Kim, Y. H.; Shin, H. J.; Lee, C. H. Organometallics
2002, 21, 3481. (d) Myagmarsuren, G.; Lee, K.-S.; Jeong, O-Y.; Ihm, S.-
K. Catal. Commun. 2003, 4, 615. (e) Lassahn, P.-G.; Lozan, V.; Wu, B.;
Weller, A. S.; Janiak, C. Dalton Trans. 2003, 4437. (f) Sun, W.-H.; Yang,
H.; Li, Z.; Li, Y. Organometallics 2003, 22, 3678. (g) Lozan, V.; Lassahn,
P.-G.; Zhang, C.; Wu, B.; Janiak, C.; Rheinwald, G.; Lang, H. Z.
Naturforsch. 2003, 58b, 1152. (h) Liang, H.; Liu, J.; Li, X.; Li, Y.
Polyhedron 2004, 23, 1619. (i) Shin, D. M.; Son, S. U.; Hong, B. K.; Chung,
Y. K.; Chun, S.-H. J. Mol. Catal. A: Chem. 2004, 210, 35. (j) Zhang, D.;
Jin, G.-X.; Weng, L.-H.; Wang, F. Organometallics 2004, 23, 3270. (k)
Gao, H.; Guo, W.; Bao, F.; Gui, G.; Zhang, J.; Zhu, F.; Wu, Q.
Organometallics 2004, 23, 6273. (l) Hu, T.; Li, Y.-G.; Li, Y.-S.; Hu, N.-H.
J. Mol. Catal. A: Chem. 2006, 253, 155. (m) Lejeune, M.; Jeunesse, C.;
Matt, D.; Sémeril, D.; Peruch, F.; Toupet, L.; Lutz, P. J. Macromol. Rapid
Commun. 2006, 27, 865. (n) Siedle, G.; Lassahn, P.-G.; Lozan, V.; Janiak,
C.; Kersting, B. Dalton Trans. 2007, 52.
(2) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414. (b) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.;
Grubbs, R. H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17,
3149. (c) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.;
Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460. (d) Drent, E.;
van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Chem. Commun.
2002, 744. (e) Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z. Angew.
Chem., Int. Ed. 2004, 43, 1821. (f) Jenkins, J. C.; Brookhart, M. J. Am.
Chem. Soc. 2004, 126, 5827. (g) Kochi, T.; Yoshimura, K.; Nozaki, K.
Dalton Trans. 2006, 25. (h) Luo, S.; Vela, J.; Lief, G. R.; Jordon, R. F.
J. Am. Chem. Soc. 2007, 129, 8946.
(3) (a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267. (b) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M.
J. Am. Chem. Soc. 1998, 120, 888. (c) Guan, Z.; Cotts, P. M.; McCord,
E. F.; McLain, S. J. Science 1999, 283, 2059. (d) Guan, Z. Chem.-Eur. J.
2002, 8, 3086. (e) Kochi, T.; Noda, S.; Yoshimura, K.; Nozaki, K. J. Am.
Chem. Soc. 2007, 129, 8948. (f) Liu, S.; Borkar, S.; Newsham, D.;
Yennawar, H.; Sen, A. Organometallics 2007, 26, 210.
(5) (a) Speiser, F.; Braunstein, P.; Saussine, L. Dalton Trans. 2004, 1539.
(b) Ajellal, N.; Kuhn, M. C. A.; Boff, A. D. G.; Hörner, M.; Thomas, C. M.;
Carpentier, J.-F.; Casagrande, O. L., Jr. Organometallics 2006, 25, 1213.
(c) Su, B.; Zhao, J.; Sun, W. Sci. China Ser. B, Chem. 2005, 48, 45. (d)
Fan, R.; Zhu, D.; Mu, Y.; Li, G.; Feng, S. Chem. J. Chin. UniV. 2005, 07,
1215., in Chinese.
10.1021/om701297k CCC: $40.75
2008 American Chemical Society
Publication on Web 03/21/2008