Angew. Chem., Int. Ed., 1998, 37, 688–749; (e) P. Stahl and H.
Waldmann, Angew. Chem., Int. Ed., 1999, 38, 3710–3713.
2 For examples from our laboratories, see: (a) P. Deck, D. Pendzia-
lek, M. Biel, M. Wagner, B. Popkirova, B. Ludolph, G. Kragol, J.
Kuhlmann, A. Giannis and H. Waldmann, Angew. Chem., Int. Ed.,
2005, 44, 4975–4980; (b) T. Lessmann, M. G. Leuenberger, S.
Menninger, M. Lopez-Canet, O. Muller, S. Huemmer, J. Bor-
¨
mann, K. Korn, E. Fava, M. Zerial, T. U. Mayer and H.
Waldmann, Chem. Biol., 2007, 14, 443–451; (c) A. B. Garcia, T.
Lessmann, J. D. Umarye, V. Mamane, S. Sommer and H. Wald-
mann, Chem. Commun., 2006, 3868–3870; (d) S. Roettger and H.
Waldmann, Eur. J. Org. Chem., 2006, 2093–2099; (e) O. Barun, K.
Kumar, S. Sommer, A. Langerak, T. U. Mayer, O. Muller and H.
¨
Waldmann, Eur. J. Org. Chem., 2005, 4773–4788; (f) M. Manger,
M. Scheck, H. Prinz, J. P. von Kries, T. Langer, K. Saxena, H.
Schwalbe, A. Furstner, J. Rademann and H. Waldmann, Chem-
¨
BioChem, 2005, 6, 1749–1753; (g) M. A. Koch, L.-O. Wittenberg,
S. Basu, D. A. Jeyaraj, E. Gourzoulidou, K. Reinecke, A. Oder-
matt and H. Waldmann, Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
16721–16726; (h) O. Barun, S. Sommer and H. Waldmann, Angew.
Chem., Int. Ed., 2004, 43, 3195–3199; (i) B. Meseguer, D. Alonso-
Scheme 5 Diversification of substituted pyridine molecules.
Dıaz, N. Griebenow, T. Herget and H. Waldmann, Angew. Chem.,
´
corresponding benzopyran 18a, thus confirming the inter-
mediacy of dihydropyrans.
Int. Ed., 1999, 38, 2902–2906; (j) B. Sauerbrei, V. Jungmann and H.
Waldmann, Angew. Chem., Int. Ed., 1998, 37, 1143–1146; (k) P.
Stahl, L. Kissau, R. Mazitschek, A. Giannis and H. Waldmann,
Angew. Chem., Int. Ed., 2002, 41, 1174–1178; (l) I. Reis-Correa Jr,
The skeletally-differentiating domino approach described
above provided molecules with various functionalities, which
could be explored for adding further diversity to the com-
pound collections. To this end, the phenol moiety in substi-
tuted pyridines 8 was converted to intermediate esters 20 by
treatment with bromoacetic acid esters. Saponification of 20
yielded the pyridine dicarboxylic acids 21 in good yields
(Scheme 5). Coumarin, as a ‘‘privileged’’ scaffold, shows
multiple biological properties, especially anti-HIV and anti-
biotic activities.10 To add this scaffold to the molecular
architecture of the library, the substituted pyridines 8 were
readily converted to the coumarin-substituted pyridine car-
boxylates by a one pot procedure (see the ESIw). Alkylation of
8 with diverse acetic acids, followed by a base-mediated
condensation, yielded the desired coumarin-substituted pyr-
idine carboxylates 22, and subsequent saponification led to the
corresponding acids 23 (Scheme 5).
A. Noren-Mueller, H.-D. Ambrosi, S. Jakupovic, K. Saxena, H.
¨
¨
Schwalbe, M. Kaiser and H. Waldmann, Chem.–Asian J., 2007, 2,
1109–1126; (m) V. Mamane, A. B. Garcia, J. D. Umarye, T.
Lessmann, S. Sommer and H. Waldmann, Tetrahedron, 2007, 63,
5754–5767; (n) M. A. Koch, A. Schuffenhauer, M. Scheck, S.
Wetzel, M. Casaulta, A. Odermatt, P. Ertl and H. Waldmann,
Proc. Natl. Acad.Sci. U. S. A., 2006, 103, 10606–10611; (o) B.
Meseguer, D. Alonso-Diaz, N. Griebenow, T. Herget and H.
Waldmann, Chem.–Eur. J., 2000, 6, 3943–3957; (p) L. Kissau, P.
Stahl, R. Mazitschek, A. Giannis and H. Waldmann, J. Med.
Chem., 2003, 46, 2917–2931.
3 R. Breinbauer, I. R. Vetter and H. Waldmann, Angew. Chem., Int.
Ed., 2002, 41, 2878–2890.
4 (a) G. C. Micalizio and S. L. Schreiber, Angew. Chem., Int. Ed.,
2002, 41, 3272–3276; (b) D. S. Tan, Nature Chem. Biol., 2005, 1,
74–84; (c) P. Arya, R. Joseph, Z. Gan and B. Rakic, Chem. Biol.,
2005, 12, 163–180.
5 A. Noren-Muller, I. Reis-Correa, Jr, H. Prinz, C. Rosenbaum,
¨
¨
K. Saxena, H. J. Schwalbe, D. Vestweber, G. Cagna, S. Schunk,
O. Schwarz, H. Schiewe and H. Waldmann, Proc. Natl. Acad. Sci.
U. S. A., 2006, 103, 10606–10611.
6 (a) M. A. Koch and H. Waldmann, Drug Discovery Today, 2005,
10, 471–483; (b) S. Wetzel, A. Schuffenhauer, S. Roggo, P. Ertl and
H. Waldmann, Chimia, 2007, 61, 355–360.
In conclusion, we have discovered efficient reagent-con-
trolled domino processes that led to structurally-diverse func-
tionalized molecules in a complementary manner. The general
approach to synthesizing different compound collections from
a common intermediate by control with different reagents
should provide efficient access to collections of small molecules
for chemical biology and medicinal chemistry research.
7 L. F. Tietze, Chem. Rev., 1996, 96, 115–136.
8 For similar pyridine syntheses, see: (a) G. Haas, J. L. Stanton, A.
V. Sprecher and W. Paul, J. Heterocycl. Chem., 1981, 18, 607–612;
(b) G. Sabitha, Aldrichimica Acta, 1996, 29, 15–25 and references
cited therein.
9 V. T. H. Nguyen, B. Appel and P. Langer, Tetrahedron, 2006, 62,
7674–7686.
10 (a) R. D. H. Murray, J. Mendez and S. A. Brown, The Natural
´
Notes and references
1 (a) M. D. Burke, E. M. Berger and S. L. Schreiber, Science, 2003,
302, 613–618; (b) D. R. Spring, Chem. Soc. Rev., 2005, 34, 472–482;
(c) J. R. Peterson and T. J. Mitchison, Chem. Biol., 2000, 9,
1275–1285; (d) K. Hinterding, D. Alonso-Diaz and H. Waldmann,
Coumarins: Occurrence, Chemistry and Biochemistry, Wiley, New
York, 1982; (b) T. Yamaguchi, T. Fukuda, F. Ishibashi and M.
Iwao, Tetrahedron Lett., 2006, 47, 3755 and references cited
therein.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 1211–1213 | 1213