P. Etayo et al. / Tetrahedron Letters 49 (2008) 2251–2253
2253
9. A pure sample of compound cis-7 was obtained by reduction of pure
4-alkoxycarbonylmethylidenepiperidine 4 in seven steps
with an overall yield of 19%.
25
cis-6. Selected data for cis-7: Oil, ½aꢀD +46.8 (c 0.89, CHCl3). 1H
NMR (400 MHz, CDCl3) d 0.95–1.03 (m, 1H), 1.25 (ddd, J = 11.8,
11.8, 11.4 Hz, 1H), 1.36 (s, 9H), 1.38–1.48 (m, 2H), 1.46–1.55 (m, 1H),
1.64 (ddd, J = 11.4, 6.8, 2.2 Hz, 1H), 1.66 (br s, 1H), 1.81–1.91 (m,
1H), 2.99 (ddd, J = 14.0, 10.6, 6.8 Hz, 1H), 3.54 (ddd, J = 6.2, 6.2,
1.6 Hz, 2H), 3.56 (dd, J = 10.4, 6.4 Hz, 1H), 3.63 (dd, J = 10.4,
3.1 Hz, 1H), 3.67–3.73 (m, 1H), 3.71–3.76 (m, 1H), 4.04 (ddd,
J = 11.8, 6.8, 4.9 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 4.50 (d,
J = 12.0 Hz, 1H), 454 (d, J = 11.8 Hz, 1H), 4.73 (d, J = 11.8 Hz,
1H), 7.16–7.29 (m, 10H); 13C NMR (100 MHz, CDCl3) d 27.5, 28.4,
29.0, 29.2, 38.2, 39.4, 54.2, 60.4, 71.5, 73.1, 73.4, 79.4, 80.1, 127.3,
In conclusion, enantiomerically pure (R)-quinuclidine-2-
carboxylic acid 1 can be obtained from natural sources in a
simple manner. The particular structure of the final
product makes it possible to obtain (R)-quinuclidine-
2-carboxylic acid from both diastereoisomers of chiral
intermediates obtained in the proposed routes. This situa-
tion allows the transformation of these diastereomeric mix-
tures without complicated chromatographic isolation
procedures. Given that the enantiomer of enaminone 5
has previously been obtained from commercially available
L-mannonic c-lactone,15 (S)-quinuclidine-2-carboxylic acid
could be obtained with equal efficiency.
127.5, 127.6, 127.6, 128.1, 128.3, 138.3, 138.8, 155.9. IR (neat, cmꢁ1
)
3435, 1684, 1247. HRMS (ESI+), m/z calcd for [C28H39NO5+Na]+:
492.2720. Found: 492.2697.
10. A pure sample of compound cis-8 was obtained by bromination of
25
pure cis-7. Selected data for cis-8: Oil, ½aꢀD +38.4 (c 0.64, CHCl3). 1H
NMR (500 MHz, CDCl3) d 0.98–1.06 (m, 1H), 1.33 (ddd, J = 12.3,
12.3, 12.3 Hz, 1H), 1.43 (s, 9H), 1.57–1.67 (m, 1H), 1.65–1.71 (m, 1H),
1.73–1.86 (m, 2H), 1.89–1.99 (m, 1H), 2.97 (ddd, J = 14.0, 10.6,
6.7 Hz, 1H), 3.36 (ddd, J = 7.1, 7.1, 1.3 Hz, 2H), 3.62 (dd, J = 10.5,
6.6 Hz, 1H), 3.69 (dd, J = 10.5, 3.3 Hz, 1H), 3.76 (ddd, J = 6.6, 4.3,
3.3 Hz, 1H), 3.77–3.83 (m, 1H), 4.08–4.15 (m, 1H), 4.52 (d,
J = 12.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 11.8 Hz,
1H), 4.80 (d, J = 11.8 Hz, 1H), 7.24–7.38 (m, 10H); 13C NMR
(125 MHz, CDCl3) d 28.4, 28.4, 28.7, 29.7, 30.9, 38.2, 39.5, 54.2, 71.5,
73.2, 73.5, 79.5, 80.1, 127.4, 127.5, 127.6, 127.7, 128.2, 128.3, 138.3,
138.8, 155.9. IR (neat, cmꢁ1) 1689, 1246. HRMS (ESI+), m/z calcd
for [C28H38BrNO4+Na]+: 554.1876. Found: 554.1854.
Acknowledgements
´
This work was supported by the Gobierno de Aragon.
P.E. was supported by a Spanish MCYT Predoctoral
Fellowship.
References and notes
1. Sodergren, M. J.; Andersson, P. G. Tetrahedron Lett. 1996, 37, 7577–
7580.
2. Von Pracejus, H.; Kohl, G. Liebigs Ann. Chem. 1969, 722, 1–11.
25
11. Selected data for 9: Oil, ½aꢀD +30.1 (c 1.10, CHCl3). 1H NMR
´
´
3. See, for example: Portevin, B.; Benoist, A.; Reond, G.; Herve, Y.;
Vincent, M.; Lepagnol, J.; De Nanteuil, G. J. Med. Chem. 1996, 39,
2379–2391.
4. Mi, Y.; Corey, E. J. Tetrahedron Lett. 2006, 47, 2515–2516.
5. Prelog, V.; Cerkovnikov, E. Liebigs Ann. Chem. 1937, 532, 83–88.
6. (a) Renk, E.; Grob, C. A. Helv. Chim. Acta 1954, 37, 2119–2123; (b)
Rubstov, M. V.; Mikhlina, E. E. Zh. Obshch. Khim. 1955, 25, 2303–
2310; (c) Langstrom, B. Chem. Scripta 1974, 5, 170–173; (d)
Bulacinski, A. B. Pol. J. Chem. 1978, 52, 2181–2187.
(500 MHz, CDCl3) d 1.33 (dd, J = 12.0, 8.5 Hz, 1H), 1.46 (ddd,
J = 7.6, 7.6, 1.8 Hz, 2H), 1.51–1.57 (m, 2H), 1.57–1.65 (m, 1H), 1.78–
1.84 (m, 1H), 2.80 (ddd, J = 14.1, 7.1, 7.1 Hz, 1H), 3.00 (dd, J = 8.0,
5.9 Hz, 2H), 3.02–3.09 (m, 1H), 3.07 (ddd, J = 8.5, 8.5, 8.1 Hz, 1H),
3.52 (ddd, J = 8.1, 5.0, 3.4 Hz, 1H), 3.64 (dd, J = 10.5, 5.0 Hz, 1H)
3.72 (dd, J = 10.5, 3.4 Hz, 1H), 4.51 (d, J = 12.0 Hz, 1H) 4.56 (d,
J = 12.0 Hz, 1H), 4.68 (d, J = 12.1 Hz, 1H) 4.79 (d, J = 12.1 Hz, 1H)
7.22–7.41 (m, 10H); 13C NMR (125 MHz, CDCl3) d 21.7, 25.6, 26.6,
29.6, 42.7, 49.9, 57.4, 71.3, 72.6, 73.4, 79.3, 127.2, 127.5, 127.6, 127.8,
128.1, 128.3, 138.3, 139.1. IR (neat, cmꢁ1) 1602, 1551, 1203, 1092,
1021. HRMS (ESI+), m/z calcd for [C23H29NO2+H]+: 352.2271.
Found: 352.2255.
´
´
7. (a) Badorrey, R.; Cativiela, C.; Dıaz-de-Villegas, M. D.; Galvez, J. A.
Tetrahedron Lett. 1997, 38, 2547–2550; (b) Badorrey, R.; Cativiela,
C.; D´ıaz-de-Villegas, M. D.; Ga´lvez, J. A. Tetrahedron 1999, 55,
12. NMR data for crude 10: 1H NMR (400 MHz, CDCl3) d 1.05 (dd,
J = 12.4, 8.3 Hz, 1H), 1.37–1,52 (m, 2H), 1.47–1,58 (m, 2H), 1.65–
1.77 (m, 1H), 1.78–1.85 (m, 1H), 2.68 (ddd, J = 13.5, 10.5, 3.2 Hz,
1H), 2.79 (ddd, J = 8.6, 8.6, 8.3 Hz, 1H), 2.87–2.97 (m, 1H), 2.88 (dd,
J = 7.2, 7.2 Hz, 2H), 3.35 (br s, 2H), 3.45–3.52 (m, 2H), 3.75–3.82 (m,
1H); 13C NMR (100 MHz, CDCl3) d 21.3, 25.7, 26.6, 29.4, 41.5, 49.5,
56.6, 62.7, 72.1.
´
7601–7612; (c) Etayo, P.; Badorrey, R.; Dıaz-de-Villegas, M. D.;
´
Galvez, J. A. Chem. Commun. 2006, 3420–3422; (d) Etayo, P.;
Badorrey, R.; Dıaz-de-Villegas, M. D.; Galvez, J. A. J. Org. Chem.
´
´
2007, 72, 1005–1008.
8. A pure sample of compound cis-6 was obtained by hydrogenolytic
N-debenzylation of (2R,4S)-2-[(S)-1,2-dibenzyloxyethyl]-4-ethoxy-
carbonylmethyl-1-[(S)-1-phenylethyl]piperidine14 in the presence of
25
25
13. Selected data for 1: Mp 269–274 °C (lit.2 268–271 °C). ½aꢀD +119.8 (c
di-tert-butyl pyrocarbonate. Selected data for cis-6: Oil, ½aꢀD +47.1 (c
1.16, CHCl3). 1H NMR (400 MHz, CDCl3) d 0.97–1.08 (m, 1H), 1.16
(t, J = 7.1 Hz, 3H), 1.36 (ddd, J = 11.9, 11.9, 11.9 Hz, 1H), 1.37 (s,
9H), 1.63–1.70 (m, 1H), 1.84–2.03 (m, 2H), 2.16 (d, J = 6.8 Hz, 2H),
2.87–2.96 (m, 1H), 3.54 (dd, J = 10.4, 6.6 Hz, 1H), 3.62 (dd, J = 10.4,
3.2 Hz, 1H), 3.67–3.71 (m, 1H), 3.70–3.76 (m, 1H), 4.04 (c,
J = 7.1 Hz, 2H), 4.06–4.10 (m, 1H), 4.44 (d, J = 12.0 Hz, 1H), 4.49
(d, J = 12.0 Hz, 1H), 4.53 (d, J = 11.8 Hz, 1H), 4.72 (d, J = 11.8 Hz,
1H), 7.15–7.28 (m, 10H); 13C NMR (100 MHz, CDCl3) d 14.4, 28.1,
28.5, 28.6, 29.0, 38.1, 41.0, 54.1, 60.3, 71.6, 73.3, 73.5, 79.5, 80.3,
127.4, 127.6, 127.7, 127.7, 128.3, 128.4, 138.4, 138.9, 155.9, 172.4. IR
23
1.00, H2O) [lit.2 ½aꢀD +120.6 (c 1, H2O)]. 1H NMR (500 MHz, D2O) d
1.80–1.94 (m, 4H), 1.92–1.99 (m, 1H), 2.17–2.23 (m, 1H), 2.20–2.29
(m, 1H), 3.22–3.33 (m, 2H), 3.35–3.49 (m, 2H), 3.93 (ddd, J = 11.0,
9.0, 2.0 Hz, 1H); 13C NMR (125 MHz, D2O) d 20.5, 21.9, 22.4, 27.4,
44.1, 47.6, 59.6, 173.8. IR (KBr, cmꢁ1) 3700–2400, 1616. HRMS
(ESI+), m/z calcd for [C8H13NO2+H]+: 156.1019. Found: 156.1024.
Anal. Calcd for C8H13NO2:C, 61.91; H, 8.44; N, 9.03. Found: C,
61.99; H, 8.68; N, 8.88.
´
´
14. Etayo, P.; Badorrey, R.; Dıaz-de-Villegas, M. D.; Galvez, J. A.
Tetrahedron: Asymmetry 2007, 18, 2812–2819.
(neat, cmꢁ1
[C30H41NO6+Na]+: 534.2826. Found: 534.2812.
) 1733, 1690, 1246. HRMS (ESI+), m/z calcd for
´
´
15. Badorrey, R.; Cativiela, C.; Dıaz-de-Villegas, M. D.; Galvez, J. A.
Tetrahedron 2002, 58, 341–354.