ORGANIC
LETTERS
2008
Vol. 10, No. 8
1513-1516
Cooperative Brønsted Acid-Type
Organocatalysis: Alcoholysis of Styrene
Oxides
Torsten Weil, Mike Kotke, Christian M. Kleiner, and Peter R. Schreiner*
Justus-Liebig-UniVersita¨t, Institut fu¨r Organische Chemie, Heinrich-Buff-Ring 58,
D-35392 Giessen, Germany
Received January 22, 2008
ABSTRACT
We present a mild and efficient method for the completely regioselective alcoholysis of styrene oxides utilizing a cooperative Brønsted acid-
type organocatalytic system comprised of mandelic acid (1 mol %) and N,N -bis-[3,5-bis-(trifluoromethyl)phenyl]-thiourea (1 mol %). Various
styrene oxides are readily transformed into their corresponding -alkoxy alcohols in good to excellent yields at full conversion. Simple aliphatic
and sterically demanding, as well as unsaturated and acid-sensitive alcohols can be employed.
′
â
Catalytic epoxide ring opening reactions with neutral1-3 and
charged nucleophiles1,2,4,5 provide access to a broad spectrum
of valuable intermediates; the addition of alcohols leads to
the synthetically important class of â-alkoxy alcohols.2,4,6,7
Classical Brønsted acid catalysis is the most widely used
method for epoxide openings through protonation of the basic
epoxide oxygen that facilitates the ring opening with the
nucleophile.8 The use of strong mineral acids is naturally
limited to acid-stable compounds; Lewis acids have also been
widely used as catalysts for epoxide ring openings.2,6 Nature,
however, uses an entirely different path for epoxide hydroly-
sis, which is key for removing unsaturated toxic organic
compounds (through epoxidation and subsequent hydroly-
sis).9 There are numerous enzymes that catalyze this reaction,
and a common motif is the activation of the epoxide through
(double) hydrogen bonding to, e.g., tyrosine residues.10 Such
enzymatic ring opening reactions are mild but also often
sensitive toward pH and solvent.11,12 Recently, we have
successfully utilized this motif, inter alia,13 for epoxide
(1) Schneider, C. Synthesis 2006, 3919-3944.
(2) Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Shaibani, R.
Tetrahedron 2004, 60, 6105-6111. Firouzabadi, H.; Iranpoor, N.; Jafari,
A. A.; Makarem, S. J. Mol. Catal. A-Chem. 2006, 250, 237-242.
(3) Reetz, M. T.; Torre, C.; Eipper, A.; Lohmer, R.; Hermes, M.; Brunner,
B.; Maichele, A.; Bocola, M.; Arand, M.; Cronin, A.; Genzel, Y.; Archelas,
A.; Furstoss, R. Org. Lett. 2004, 6, 177-180. Yang, M. H.; Zhu, C. J.;
Yuan, F.; Huang, Y. J.; Pan, Y. Org. Lett. 2005, 7, 1927-1930. Desai, H.;
D’Souza, B. R.; Foether, D.; Johnson, B. F.; Lindsay, H. A. Synthesis 2007,
902-910. Arai, K.; Salter, M. M.; Yamashita, Y.; Kobayashi, S. Angew.
Chem., Int. Ed. 2007, 46, 955-957. Yadav, J. S.; Reddy, A. R.; Narsaiah,
A. V.; Reddy, B. V. S. J. Mol. Catal. A: Chem. 2007, 261, 207-212.
(4) Yarapathi, R. V.; Reddy, S. M.; Tammishetti, S. React. Funct. Polym.
2005, 64, 157-161.
(6) Prestat, G.; Baylon, C.; Heck, M. P.; Mioskowski, C., Tetrahedron
Lett. 2000, 41, 3829-3831. Chandrasekhar, S.; Reddy, C. R.; Babu, B. N.;
Chandrashekar, G. Tetrahedron Lett. 2002, 43, 3801-3803. Kantam, M.
L.; Jeyalakshmi, K. A. K.; Likhar, P. R. Catal. Lett. 2003, 89, 95-97.
Bradley, D.; Williams, G.; Lawton, M. Org. Biomol. Chem. 2005, 3, 3269-
3272. Gallo, J. M. R.; Teixeira, S.; Schuchardt, U. Appl. Catal. A 2006,
311, 199-203. Solodenko, W.; Jas, G.; Kunz, U.; Kirschning, A. Synthesis
2007, 583-589.
(7) Iranpoor, N.; Mohammadpour Baltork, I. Tetrahedron Lett. 1990,
31, 735-738. Garcia, R.; Martinez, M.; Aracil, J. Chem. Eng. Technol.
1999, 22, 987-990. Matsunaga, S.; Ohshima, T.; Shibasaki, M. AdV. Synth.
Catal. 2002, 344, 3-15. Robinson, M. W. C.; Buckle, R.; Mabbett, I.; Grant,
G. M.; Graham, A. E. Tetrahedron Lett. 2007, 48, 4723-4725.
(8) Chapman, N. B.; Biggs, J.; Finch, A.; Wray, V. J. Chem. Soc. B
1971, 55-63. Coxon, J. M.; Townsend, M. A. E. Tetrahedron 2007, 63,
5665-5668.
(5) Vandeweghe, P.; Collin, J. Tetrahedron Lett. 1995, 36, 1649-1652.
Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 1996, 35, 1995-
1995. Albanese, D.; Landini, D.; Penso, M. Tetrahedron 1997, 53, 4787-
4790. Schaus, S. E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001-1004. Lau,
E. Y.; Newby, Z. E.; Bruice, T. C. J. Am. Chem. Soc. 2001, 123, 3350-
3357. Sabitha, G.; Babu, R. S.; Rajkumar, M.; Reddy, C. S.; Yadav, J. S.
Tetrahedron Lett. 2001, 42, 3955-3958. Reddy, M. A.; Surendra, K.;
Bhanumathi, N.; Rao, K. R. Tetrahedron 2003, 59, 2363-2363. Smitha,
G.; Reddy, C. S. J. Chem. Res., Synop. 2004, 300-301. Belokon, Y. N.;
Chusov, D.; Borkin, D. A.; Yashkina, L. V.; Dmitriev, A. V.; Katayev, D.;
North, M. Tetrahedron: Asymmetry 2006, 17, 2328-2333. Das, B.; Reddy,
V. S.; Tehseen, F.; Krishnaiah, M. Synthesis 2007, 666-668.
10.1021/ol800149y CCC: $40.75
© 2008 American Chemical Society
Published on Web 03/27/2008