H. Meguro et al. / Journal of Organometallic Chemistry 693 (2008) 1109–1116
1115
(dd, J = 5.3 Hz, 2.2 Hz, 2H), 7.90–7.80 (m, 8H), 7.70–7.50
(m, 12H), 5.43 (s, 6H). 31P NMR (160 MHz in CDCl3): d
56.2. Anal. Calc. for C35H28Cl3NP2PdRuS2: C, 46.58; H,
3.13; N, 1.55. Found: C, 45.74; H, 2.78; N, 1.50%. Because
of low solubility of 6 in CDCl3, satisfactory 13C NMR
spectrum has not been obtained.
quest/cif. Supplementary data associated with this article
References
[1] (a) M. Albrecht, G. van Koten, Angew. Chem., Int. Ed. 40 (2001) 3750;
(b) P. Steenwinkel, R.A. Gossage, G. van Koten, Chem. Eur. J. 4
(1998) 759;
3.10. Synthesis of dichloro(benzonitrile){[3,5-
bis(diphenylphosphinothioyl)pyridine-
C4,S,S0]chloropalladium(II)}platinum(II) (7)
(c) M. van der Boom, D. Milstein, Chem. Rev. 103 (2003) 1759;
(d) J.T. Singleton, Tetrahedron 59 (2003) 1837;
´
(e) K.J. Szabo, Synlett (2006) 811, and references therein.
[2] (a) C.H.M. Amijs, G.P.M. van Klink, G. van Koten, Dalton Trans.
(2006) 308;
To a THF (5 mL) solution of 2a (9.8 mg, 0.015 mmol)
was added PtCl2(PhCN)2 (7.1 mg, 0.015 mmol), and stirred
for 12 h. The solvent was evaporated, and the residue was
washed with water, CH3CN, and ether. The product was
purified by recrystallization from a mixture of CH2Cl2
and CH3CN to give a yellow powder of 7 (5.1 mg,
33% yield). FAB-mass: m/z = 1020 [M+H]+. 1H NMR
(400 MHz in CDCl3): d 8.28 (dd, J = 5.6 Hz, 1.7 Hz, 2H),
7.88–7.80 (m, 8H), 7.74–7.68 (m, 7H), 7.65–7.58 (m, 8H),
7.53 (dd, J = 8.2 Hz, 7.0 Hz, 2H). 31P NMR (160 MHz in
CDCl3): d 56.1. Because of low solubility of 7 in CDCl3,
satisfactory 13C NMR spectrum has not been obtained.
IR (KBr, cmꢀ1): 2288 (m(C„N)). Anal. Calc. for
C36H27Cl3N2P2PdPtS2: C, 42.33; H, 2.66; N, 2.74. Found:
C, 42.03; H, 2.98; N, 2.68%.
(b) F. Wurthner, C.-C. You, C.R. Saha-Mo¨ller, Chem. Soc. Rev. 33
¨
(2004) 133;
(c) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 43
(2004) 2334;
(d) M. Fujita, Chem. Soc. Rev. 27 (1998) 417, and references therein.
´
[3] (a) M.Q. Slagt, G. Rodrıguez, M.M.P. Grutters, R.J.M. Klein
Gebbink, W. Klopper, L.W. Jenneskens, M. Lutz, A.L. Spek, G.
van Koten, Chem. Eur. J. 10 (2004) 1331;
(b) R. van de Coevering, M. Kuil, A.P. Alfers, T. Visser, M. Lutz,
A.L. Spek, R.J.M. Klein Gebbink, G. van Koten, Organometallics
24 (2005) 6147;
(c) A.V. Chuchuryukin, P.A. Chase, H.P. Dijkstra, B.M.J.M.
Suijkerbuijk, A.M. Mills, A.L. Spek, G.P.M. van Klink, G. van
Koten, Adv. Synth. Catal. 347 (2005) 447;
(d) C.H.M. Amijs, G.P.M. van Klink, M. Lutz, A.L. Spek, G. van
Koten, Organometallics 24 (2005) 2944;
(e) J.R. Hall, S.J. Loeb, G.K.H. Shimizu, G.P.A. Yap, Angew.
Chem., Int. Ed. 37 (1998) 121;
(f) H.-J. van Manen, R.H. Fokkens, F.C.J.M. van Veggel, D.N.
Reinhoudt, Eur. J. Org. Chem. (2002) 3189;
3.11. X-ray crystallographic study
The diffraction data were collected with a Rigaku Saturn
(g) S. Back, M. Albrecht, A.L. Spek, G. Rheinwald, H. Lang, G.
van Koten, Organometallics 20 (2001) 1024;
(h) S. Back, R.A. Gossage, H. Lang, G. van Koten, Eur. J. Inorg.
Chem. (2000) 1457;
(i) S. Back, M. Lutz, A.L. Spek, H. Lang, G. van Koten, J.
Organomet. Chem. 620 (2001) 227;
(j) P. Steenwinkel, D.M. Grove, N. Veldman, A.L. Spek, G. van
Koten, Organometallics 17 (1998) 5647;
CCD area detector with graphite monochromated Mo Ka
˚
(k = 0.71070 A) at ꢀ160 °C. The data were corrected for
Lorentz and polarization effects, and an empirical absorp-
tion correction was applied. The structure was solved by
direct methods (SIR 2002) and expanded using Fourier tech-
niques. In general, the non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were refined using the
riding model.
´
(k) M. Gagliardo, G. Rodrıguez, H.H. Dam, M. Lutz, A.L. Spek,
R.W.A. Havenith, P. Coppo, L.D. Cola, F. Hartl, G.P.M. van
Klink, G. van Koten, Inorg. Chem. 45 (2006) 2143;
(l) B.M.J.M. Suijkerbuijk, M. Lutz, A.L. Spek, G. van Koten,
R.J.M. Klein Gebbink, Org. Lett. 6 (2004) 3023;
(m) W.C. Yount, H. Juwarker, S.L. Craig, J. Am. Chem. Soc. 125
(2003) 15302;
For 2a, a solved CHCl3 molecule was located by using a
rigid group due to disordering. For 6, hydrogen atoms
excepted for those of the g6-benzene were refined using
the riding model due to disordering.
(n) W.W. Gerhardt, A.J. Zucchero, J.N. Wilson, C.R. South,
U.H.F. Bunz, M. Weck, Chem. Commun. (2006) 2141;
(o) C.H.M. Amijs, A. Berger, F. Soulimani, T. Visser, G.P.M. van
Klink, M. Lutz, A.L. Spek, G. van Koten, Inorg. Chem. 44 (2005)
6567;
(p) S.J. Loeb, G.K.H. Shimizu, J.A. Wisner, Organometallics 17
(1998) 2324;
(q) S.J. Loeb, G.K.H. Shimizu, J. Chem. Soc., Chem. Commun.
(1993) 1395;
Acknowledgements
The authors are grateful to Prof. K. Tanaka, Dr. R.
Okamura, and Ms. K. Tsutsui of Institute for Molecular
Science for ESI-MS measurement.
Appendix A. Supplementary material
(r) M. Gagliardo, J. Perelaer, F. Hartl, G.P.M. van Klink, G. van
Koten, Eur. J. Inorg. Chem. (2007) 2111;
(s) G.D. Batema, K.T.L. van de Westelaken, J. Guerra, M. Lutz,
CCDC 659442, 659443, 659444, 659445, 659446, 659447
and 659448 contain the supplementary crystallographic
data for 1, 2a ꢁ 2CHCl3, 2b ꢁ 2CHCl3, 2c ꢁ CHCl3, 30 ꢁ
2CH3CN, 50 ꢁ CH3CN and 6 ꢁ CHCl3. These data can be
obtained free of charge from The Cambridge Crystallo-
´
A.L. Spek, C.A. van Walree, C. de Mello Donega, A. Meijerink,
G.P.M. van Klink, G. van Koten, Eur. J. Inorg. Chem. (2007) 1422.
[4] (a) T. Kanbara, T. Yamamoto, J. Organomet. Chem. 688 (2003) 15;
(b) T. Kanbara, T. Yamamoto, in: M.A. Cato (Ed.), Focus on
Organometallic Chemistry Research, Nova Science Publishers, New
York, 2005, p. 111 (Chapter 4);