Scheme 3 Reagents and conditions: a) PhCHO, p-TsOH, toluene, reflux, 16 h, 92%; b) NaH, DMF, 0 ◦C, 30 min then BnBr, DMF, rt, 12 h, 87%; c)
NaOH, THF–H2O, rt, 40 min, quant.; d) Cs2CO3, MeOH–H2O, rt, 20 min then BnBr, DMF, rt, 8 h, 8a 94%; e) NaOMe, MeOH, rt, 1 h, 8b 94%; f)
Meldrum’s acid, toluene, reflux, 3 h 30 min, 9a 92%, 9b 79%; g) H2, Pd/C 5%, MeOH–H2O, rt, 40 h, 3a 70%, 3b quant.; h) vanillin 4, DMAP, piperidine,
DMF, rt, 7 days, 1 40%, 2 75%
quantitative, respectively). Finally, DMAP-catalysed Knoevenagel
condensation was achieved on vanillin 4 and malonates 3a–b, using
the mild conditions developed by List et al. (rt, 7 days).9 This
afforded 5-O-feruloyquinic acid10 1 (40%) and 5-O-feruloylquinic
acid methyl ester11 2 (75%). The analytical data (1H and 13C NMR)
of synthetic 5-O-feruloyquinic acid 1 were in good agreement with
the reported data for the natural product.12
In conclusion, starting from quinic acid and vanillin, the
syntheses of 5-O-feruloylquinic acid and 5-O-feruloyquinic acid
methyl ester were achieved in 19% and 44% overall yields,
respectively. This new efficient route to chlorogenic acids could
be applied in the future to the synthesis of potential human
metabolites of these compounds (sulfo-and glucuro-conjugates),
which are not compatible with the deprotection step conditions
used in the previous reported syntheses. Work on the synthesis of
these conjugates is in progress in our laboratory and the details
will be published in a forthcoming paper.
4 (a) K. Ishikawa, Y. Sakurai, T. Ariyiama, S. Yoshioka, T. Shiraki,
H. Horikoshi, H. Kuwano, T. Kinoshita and M. Boriboon, Sankyo
Kenkyusho Nempo, 1991, 43, 99–110; (b) H. Hemmerle, H.-J. Burger,
P. Below, G. Schubert, R. Rippel, P. W. Schindler, E. Paulus and A. W.
Herling, J. Med. Chem., 1997, 40, 137–145; (c) M. Sefkow, Eur. J. Org.
Chem., 2001, 1137–1141.
5 J. M. Harris, W. J. Watkins, A. R. Hawkins, J. R. Coggins and C. Abell,
J. Chem. Soc., Perkin Trans. 1, 1996, 2371–2377.
6 N. Kaila, W. S. Somers, B. E. Thomas, P. Thakker, K. Janz, S.
DeBernardo, S. Tam, W. J. Moore, R. Yang, W. Wrona, P. W. Bedard, D.
Crommie, J. C. Keith, D. H. H. Tsao, J. C. Alvarez, H. Ni, E. Marchese,
J. T. Patton, J. L. Magnani and R. T. Camphausen, J. Med. Chem.,
2005, 48, 4346–4357.
7 J.-L. Montchamp, J. Peng and J. W. Frost, J. Org. Chem., 1994, 59,
6999–7007.
8 Y. Ryu and I. Scott, Tetrahedron Lett., 2003, 44, 7499–7502.
9 B. List, A. Doehring, M. T. Hechavarria Fonseca, A. Job and R. Rios
Torres, Tetrahedron, 2006, 62, 476–482.
10 Data for compound 1: white solid, [a]25 = −19.64 (c = 1.12 g l−1
,
D
MeOH); 1H NMR (360 MHz, MeOD-d4, TMS as reference) d 7.63 (d,
J = 15.9 Hz, 1H), 7.15 (d, J = 1.9 Hz, 1H), 7.04 (dd, J = 8.3, 1.8 Hz,
1H), 6.77 (d, J = 8.2 Hz, 1H), 6.35 (d, J = 15.9 Hz, 1H), 5.38 (ddd, J
= 11.3, 10.1, 5.0 Hz, 1H), 4.15 (q, J = 2.8 Hz, 1H), 3.87 (s, 3H, MeO),
3.69 (dd, J = 9.9, 3.1 Hz, 1H), 2.19–1.92 (m, 4H); 13C NMR (90 MHz,
MeOD-d4, TMS as reference) d 182.4, 170.8, 153.8, 151.2, 148.4, 128.1,
125.8, 118.3, 116.4, 112.8, 79.1, 76.4, 74.4, 73.9, 57.7, 42.2, 40.4; EIMS
(70 eV) m/z [M − 1]−: 367.09 (M − H), 191.05; EIMS (70 eV) m/z [M
+ 1]+: 177.05.
Notes and references
1 (a) P. A. Kroon and G. Williamson, J. Sci. Food Agric., 1999, 79, 355–
361; (b) M. N. Clifford, J. Sci. Food Agric., 1999, 79, 362–372; (c) M. N.
Clifford, The nature of chlorogenic acids. Are they advantageous
compounds in coffee?, 17e`me Colloque Scientifique International sur
le Cafe´, ed. ASIC, 1997, pp. 79–88.
2 (a) Phytochemistry Dictionary, ed. J. B. Harborne and H. Baxter, Taylor
& Francis, London, 1993, p. 1745; (b) A. A. P. Almeida, A. Farah,
D. A. M. Silva, E. A. Nunan and M. B. A. Gloria, J. Agric. Food
Chem., 2006, 54, 8738–8743.
3 (a) H. Iwashashi, Y. Negoro, A. Ikeda, H. Morishita and R. Kido,
Biochem. J., 1986, 239, 641–646; (b) M. Ohnishi, H. Morishita,
H. Iwashashi, S. Toda, Y. Shirataki, M. Kimura and R. Kido,
Phytochemistry, 1994, 36, 579–583; (c) C. Castelluccio, G. Pagana, N.
Melikan, G. P. Bolwell, J. Prodham, J. Sampson and C. Rice-Evans,
FEBS Lett., 1995, 368, 188–192; (d) Y. Kono, S. Kashine, T. Yoneyama,
Y. Sakamoto, Y. Matsui and H. Shibata, Biosci., Biotechnol., Biochem.,
1998, 62, 22–27.
11 Data for compound 2: white foam, [a]25 = −31.25 (c = 1.12 g l−1
,
D
MeOH); 1H NMR (360 MHz, CDCl3, TMS as reference) d 7.62 (d, J
= 15.9 Hz, 1H), 7.00 (dd, J = 8.2, 1.9 Hz, 1H), 6.99 (d, J = 1.8 Hz,
1H), 6.90 (d, J = 8.2 Hz, 1H), 6.28 (d, J = 15.9 Hz, 1H), 6.07 (s, OH),
5.38 (ddd, J = 11.6, 9.8, 4.8 Hz, 1H), 4.32 (s, OH), 4.24 (m, 1H), 3.90
(s, 3H), 3.80 (s, 3H), 3.70 (m, 1H), 3.24 (d, J = 8.3 Hz, OH), 2.35 (ddd,
J = 13.0, 4.7, 3.0 Hz, 1H), 2.25 (td, J = 14.8, 3.1 Hz, 1H), 2.09 (dd,
J = 14.8, 3.2 Hz, 1H), 1.95 (dd, J = 12.9, 11.7, Hz, 1H); 13C NMR
(90 MHz, CDCl3, TMS as reference) d 174.4, 167.6, 148.1, 146.8, 145.8,
126.7, 123.2, 114.8, 114.7, 109.4, 75.6, 73.9, 70.8, 70.6, 55.9, 53.2, 38.7,
36.8.; EIMS (70 eV) m/z [M − 1]−: 381.10.
12 (a) K. Iwai, N. Kishimoto, Y. Karino, K. Mochida and T. Fujita,
J. Agric. Food Chem., 2004, 52, 4893–4898; (b) E. J. Gentry, H. B.
Jampani, A. Keshavarz-Shokri, M. D. Morton, D. V. Velde, H.
Telikepalli and L. A. Mitscher, J. Nat. Prod., 1998, 61, 1187–1193.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 986–987 | 987
©