Vakulya et al.
The enantioselective Michael addition reaction represents one
of the most important methods for the construction of optically
active compounds.6 As a result, considerable effort has been
directed to the development of the organocatalytic asymmetric
version7 of these processes, although the resulting catalysts were
mainly chiral secondary amines using enamine or iminium
activation pathways.
Results and Discussion
The conjugate addition of acidic nitroalkanes to R,ꢀ-unsatur-
ated carbonyl compounds is an important class of C-C bond
forming Michael addition reactions.11 The products of these
reactions are useful intermediates for a variety of natural and
non-natural products. Although several metal catalyzed and
organocatalyzed versions of these reactions exist, there is still
room for further improvement.12–14
Our group recently communicated the development of
bifunctional cinchona organocatalysts for catalyzing the asym-
metric Michael addition reaction of nitromethane to chalcones.8
We prepared several thiourea derived cinchona catalysts and
showed that they efficiently promoted the model reaction with
high level of enantioselectivity. The interest in this class of
catalysts was further heightened after several asymmetric
catalytic applications appeared in the literature with a remarkably
diverse combination of substrates.9,10
Due to the unique position in asymmetric chemistry, we
started to investigate the possible application of cinchona
alkaloids15 in asymmetric Michael addition reactions. The
reasons were evident: quinine has a large number of attributes
that fulfill many requirements sought by synthetic chemists.
Besides its availability and low price, it is endowed with unique
functional, stereochemical, and conformational features that lend
itself and its derivatives as efficient ligands16 or organocata-
lysts.17 Furthermore, over 20 years ago Wynberg and Hiemstra
demonstrated that natural cinchona alkaloids could function as
a bifunctional catalyst in Michael addition reactions. In their
seminal paper, they showed that the C-9 hydroxyl and quinu-
clidine groups are able to position and activate the nucleophiles
and electrophiles in conjugate thiol addition reactions.18 How-
ever, the natural cinchona catalyzed C-C Michael addition of
nitromethane to trans-chalcone proceeded only under 400 MPa
and afforded the adduct with modest enantioselectivity.19 This
result indicated that the exploration of more active bifunctional
cinchona derivatives might be the key to the development of
efficient catalytic processes.
The aim of the present study is to expand our preliminary
investigations in several ways. Further catalysts were prepared
and tested in catalytic asymmetric Michael addition reactions.
Then the substrate scope and limitation were investigated; the
scope of the nitroalkanes and chalcone structures also have been
evaluated. Finally, the stereoselective synthesis of rolipram has
been performed.
(5) Recent papers on bifunctional mechanism: (a) Hamza, A.; Schubert, G.;
Soós, T.; Pápai, I. J. Am. Chem. Soc. 2006, 128, 13151. (b) Bass, J. D.; Solovyov,
A.; Pascall, A. J.; Katz, A. J. Am. Chem. Soc. 2006, 128, 3737. (c) Hammar, P.;
Marcelli, T.; Hiemstra, H.; Himo, F. AdV. Synth. Catal. 2007, 349, 2537. (d)
Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 15872.
Following Wynberg’s proposal to have a more effective
catalyst system, Hatakeyama developed a chiral methodology
based on ꢀ-isocupreidine. Using a covalent linkage, this catalyst
(6) Recent reviews with extensive literature background: (a) Sibi, M. P.;
Manyem, S. Tetrahedron 2000, 56, 8033. (b) Krause, N.; Hoffmann-Röder, A.
Synthesis 2001, 171. (c) Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003,
42, 1688.
(7) Recent reviews: (a) Almasi, D.; Alonso, D. A.; Najera, C Tetrahedron:
Asymmetry 2007, 18, 299. (b) Vicario, J. L.; Badía, D.; Carrillo, L. Synthesis
2007, 2065. (c) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(12) Selected examples using chiral metal complexes: (a) Yamaguchi, M.;
Igarashi, Y.; Reddy, R. S.; Shiraishi, T.; Hirama, M. Tetrahedron 1997, 53,
11223. (b) Funabashi, K.; Saida, Y.; Kanai, M.; Arai, T.; Sasai, H.; Shibasaki,
M. Tetrahedron Lett. 1998, 39, 7557. (c) Sundararajan, G.; Prabagaran, N. Org.
Lett. 2001, 3, 389. (d) Lu, S.-F.; Du, D.-M.; Xu, J.; Zhang, S.-W. J. Am. Chem.
Soc. 2006, 128, 7418.
(8) Vakulya, B.; Varga, Sz.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967.
(9) Applicationofthioureabasedepi-quinineandepi-quinidineorganocatalysts:(a)
McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6370. (b)
Bernardi, L.; Fini, F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron, 2006,
62, 375. (c) Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am.
Chem. Soc. 2006, 128, 4932. (d) Song, J.; Wang, Y.; Deng, L. J. Am. Chem.
Soc. 2006, 128, 6048. (e) McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org.
Chem. 2006, 71, 7494. (f) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L.
J. Am. Chem. Soc. 2006, 128, 8156. (g) Bode, C. M.; Ting, A.; Schaus, S. E.
Tetrahedron 2006, 62, 11499. (h) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.;
Duan, W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652. (i) Gu, C.-L.; Liu,
L.; Sui, Y.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. Tetrahedon: Asymmetry 2007,
18, 455. (j) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Mazzanti, A;
Sambri, L.; Melchiore, P. Chem. Comm. 2007, 722. (k) Song, J.; Shih, H.-W.;
Deng, L. Org. Lett. 2007, 9, 603. (l) Wang, B.; Wu, F.; Wang, Y.; Liu, X.;
Deng, L. J. Am. Chem. Soc. 2007, 129, 768. (m) Zu, L.; Wang, J.; Li, H.; Xie,
H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (n) Wang, Y.; Li,
H.; Wang, Y.-Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2007,
129, 6364. (o) Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007,
129, 3830. (p) Wang, J.; Zu, L.; Li, H.; Xie, H.; Wang, W. Synthesis 2007,
2576. (q) Amere, M.; Lasne, M.-C.; Rouden, J. Org. Lett. 2007, 9, 2621. (r)
Dine´r, P.; Nielsen, M.; Bertelsen, S.; Niess, B.; Jorgensen, K. A. Chem. Comm.
2007, 3646. (s) Lubkoll, J.; Wennemers, H. Angew. Chem., Int. Ed. 2007, 46,
6841. (t) Pettersen, D.; Piana, F.; Bernardi, L.; Fini, F.; Fochi, M.; Sgarzani, V.;
Ricci, A. Tetrahedron Lett. 2007, 48, 7805. (u) Li, D. R.; Murugan, A.; Falck,
J. R. J. Am. Chem. Soc. 2008, 130, 46. (v) Peschiulli, A.; Gun’ko, Y.; Connon,
S. J. J. Org. Chem. 2008, 73, 2454. (w) Rho, H. S.; Oh, S. H.; Lee, J. W.; Lee,
J. Y.; Chin, J.; Song, C. E. Chem. Commun. 2008, 1208.
(13) Selected references using phase transfer catalysts: (a) Collona, S.;
Hiemstra, H.; Wynberg, H. J. Chem. Soc., Chem. Commun. 1978, 238. (b) Bakó,
P.; Szöllõsy, A.; Bombicz, P.; Tõke, L. Synlett 1997, 291. (c) Corey, E. J.; Zhang,
F.-Y. Org. Lett. 2000, 2, 4257. (d) Kim, D. Y.; Huh, S. C. Tetrahedron 2001,
57, 8933. (e) Bakó, T.; Bakó, P.; Keglevich, Gy.; Báthori, N.; Czugler, M.; Tatai,
J.; Novák, T.; Parlagh, Gy.; Tõke, L. Tetrahedron: Asymmetry 2003, 14, 1917.
(f) Ooi, T.; Takada, S.; Fujioka, S.; Maruoka, K. Org. Lett. 2005, 7, 5143.
(14) Selected references using organocatalysts: (a) Prieto, A.; Halland, N.;
Jorgensen, K. A. Org. Lett. 2005, 7, 3897. (b) Mitchell, C. E. T.; Brenner, S. E.;
Garcia-Fortant, J.; Ley, S. V. Org. Biomol. Chem. 2006, 4, 2039. (c) Hanessian,
S.; Shao, Z.; Warrier, J. S. Org. Lett. 2006, 8, 4787. (d) Linton, B. R.; Reutershan,
M. H.; Aderman, C. M.; Richardson, E. A.; Brownell, K. R.; Ashley, C. W.;
Evans, C. A.; Miller, S. J. Tetrahedron Lett. 2007, 48, 1993. (e) Hojabri, L.;
Hartikka, A.; Moghaddam, F. M.; Arvidsson, P. I. AdV. Synth. Catal. 2007, 349,
740. (f) Gotoh, H.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2007, 9, 5307. (g) Zu,
L.; Xie, H.; Li, H.; Wang, W. AdV. Synth. Catal. 2007, 349, 2660.
(15) For reviews, see: (a) Kacprzak, K.; Gawronski, J. Synthesis 2001, 961.
(b) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem.
Res. 2004, 37, 621.
(16) Some selected reviews: (a) Kolb, H. C.; VanNieuwenhze, M. S.;
Sharpless, K. B. Chem. ReV. 1994, 94, 2483. (b) Burgi, T.; Baiker, A. Acc. Chem.
Res. 2004, 37, 909.
(17) Some recent examples of the organocatalytic application of cinchona
alkaloids or their derivatives: (a) Alema´n, J.; Jacobsen, C. B.; Frisch, K.;
Overgaard, J.; Jørgensen, K. A. Chem. Commun. 2008, 632. (b) Ricci, P.; Carlone,
A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. AdV. Synth. Catal. 2007,
350, 49. (c) Chen, W.; Du, W.; Duan, Y.-Z.; Wu, Y.; Yang, S.-Y.; Chen, Y.-C.
Angew. Chem., Int. Ed. 2007, 46, 7667. (d) Poisson, T.; Dalla, V.; Marsais, F.;
Dupas, G.; Oudeyer, S.; Levacher, V. Angew. Chem., Int. Ed. 2007, 46, 7090.
(e) Lopez-Cantarero, J.; Cid, M. B.; Poulsen, T. B.; Bella, M.; Ruano, J. L. G.;
Jorgensen, K. A. J. Org. Chem. 2007, 72, 7062. (f) Perdicchia, D.; Jorgensen,
K. A. J. Org. Chem. 2007, 72, 3565.
(10) Application of thiourea based epi-cinchonine and epi-cinchonidine
organocatalysts which were developed parallel by Chen et al.: (a) Li, B.-J.; Jiang,
L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603. (b) Ye, J.;
Dixon, D. J.; Peter, S.; Hynes, P. S. Chem. Commun. 2005, 4481. (c) Tillman,
A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191. (d) Liu, T. Y.; Cui,
H. L.; Chai, Q.; Long, J.; Li, B. J.; Wu, Y.; Ding, L. S.; Chen, Y. C. Chem.
Commun. 2007, 2228. (e) Hynes, P. S.; Stranges, D.; Stupple, P. A.; Guarna,
A.; Dixon, D. J. Org. Lett. 2007, 9, 2107. (f) Jiang, L.; Zheng, H.-T.; Liu, T.-
Y.; Yue, L.; Chen, Y.-C. Tetrahedron 2007, 63, 5123.
(18) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.
(19) Sera, A.; Takagi, K.; Katayama, H.; Yamada, H. J. Org. Chem. 1988,
53, 1157.
(11) An excellent review with extensive literature background: Ballini, R.;
Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem. ReV. 2005, 105, 933.
3476 J. Org. Chem. Vol. 73, No. 9, 2008