K.R. Krishnapriya et al. / Spectrochimica Acta Part A 69 (2008) 1077–1081
1081
References
[1] P. Guerriero, S. Tamburini, P.A. Vigato, Coord. Chem. Rev. 139 (1995) 17.
[2] M. Zhao, C. Stern, A.G.M. Barrett, B.M. Hoffman, Angew. Chem. Int. Ed.
42 (2003) 462.
[3] M.D. Santana, G. Garcia, M. Julve, F. Lloret, J. Perez, M. Liu, F. Sanz, J.
Cano, G. Lopez, Inorg. Chem. 43 (2004) 2132.
[4] I.O. Fritsky, R. Ott, H. Pritzkow, K. Kramer, Chem. Eur. J. 7 (2001) 1221.
[5] G.X. Zheng, Q.F. Wang, S.L. Yan, Polish J. Chem. 78 (2004) 19.
[6] S. Torelli, C. Belle, L. Gautier-Luneau, J.L. Pierre, Inorg. Chem. 39 (2000)
3526.
[7] M. Shamsipur, M. Yousefi, M. Hosseini, M.R. Ganjali, H. Sharghi, H.
Naeimi, Anal. Chem. 73 (2001) 2869.
[8] F. Mancin, P. Scrimin, P. Tecilla, U. Tonellato, Chem. Commun. (2005)
2540.
Fig. 5. Cyclic voltammograms of the copper(II) complexes (a) [CuH2L] and (b)
[Cu2L].
[9] N. Fukita, M. Ohba, T. Shiga, H. Okawa, Y. Ajiro, J. Chem. Soc., Dalton
Trans. (2001) 64.
[10] L. Cronin, A.R. Mount, S. Parsons, N. Robertson, J. Chem. Soc., Dalton
Trans. (1999) 1925.
[11] L. Cronin, P.A. McGregor, S. Parsons, S. Teat, R.O. Gould, V.A. White,
N.J. Long, N. Robertson, Inorg. Chem. 43 (2004) 8023.
[12] R. Ruiz, J. Faus, F. Lloret, M. Julve, Y. Journaux, Coord. Chem. Rev. 193
(1999) 1069.
[13] F. Lloret, Y. Journaux, M. Julve, Inorg. Chem. 29 (1990) 3967.
[14] F. Lloret, M. Julve, J.A. Real, J. Faus, R. Ruiz, M. Mollar, I. Castro, C.
Bois, Inorg. Chem. 31 (1992) 2627.
cated that the mononuclear complex undergoes single-electron
reduction.
The binuclear Cu(II) complex showed two reduction waves
at cathodic region and the reduction potentials are found to
be −0.75 V (Ep1c) and −1.27 V (Ep2c). Coulometric studies
performed at 100 mV more negative relative to the first reduc-
tion wave consumed approximately one electron (n = 0.90) and
at 100 mV more negative to the second reduction wave con-
sumed two electrons (n = 1.85) per molecule, which indicated
the involvement of two single-electron transfers in the reduction
process and which can be assigned as follows:
[15] V. Mckee, Adv. Inorg. Chem. 40 (1993) 323.
[16] S. Mitra, N. Tamai, Chem. Phys. Lett. 282 (1998) 391.
[17] N. Aurangzeb, C.E. Hulme, C.A. McAuliffe, R.G. Pritchard, M. Watkinson,
M.R. Bermejo, A. Garcia-Deibe, M. Rey, J. Sanmartin, A. Sousa, J. Chem.
Soc., Chem. Commun. (1994) 1153.
[18] M. Watkinson, A. Whiting, C.A. McAuliffe, J. Chem. Soc., Chem. Com-
mun. (1994) 2141.
[19] N.E. Borisova, M.D. Reshetova, Y.A. Ustynyuk, Chem. Rev. 107 (2007)
46.
[20] D. Saravanakumar, N. Sengottuvelan, M. Kandaswamy, P.G. Aravindan,
D. Velmurugan, Tetrahedron Lett. 46 (2005) 7255.
CuIICuII → CuIICuI → CuICuI
The above two reduction processes are found to be irreversible
in nature.
[21] D. Saravanakumar, N. Sengottuvelan, M. Kandaswamy, Inorg. Chem. Com-
mun. 8 (2005) 386.
4. Conclusion
[22] D. Saravanakumar, N. Sengottuvelan, V. Narayanan, M. Kandaswamy, K.
Chinnakali, G. Senthilkumar, H.K. Fun, Eur. J. Inorg. Chem. (2004) 872.
[23] N. Sengottuvelan, D. Saravanakumar, S. Sridevi, V. Narayanan, M. Kan-
daswamy, Supramol. Chem. 16 (2004) 129.
[24] C.N. Verani, E. Rentschler, T. Weyhermuller, E. Bill, P. Chaudhuri, J. Chem.
Soc., Dalton Trans. (2000) 251.
[25] J. Chang, O. Vogl, J. Polym. Sci. 15 (1977) 311.
[26] H.H. Hammud, A. Ghannoum, M.S. Masoud, Spectrochim. Acta A 63
(2006) 255.
[27] J.C. Kim, J.C. Fettinger, Y.I. Kim, Inorg. Chim. Acta 286 (1999) 67.
[28] A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Ams-
terdam, 1984.
[29] J.P. Costes, F. Dahan, J.P. Laurent, M. Drillon, Inorg. Chim. Acta 294
(1999) 8.
[30] S. Zhu, F. Kon, H. Lin, C. Lin, M. Lin, Y. Chen, Inorg. Chem. 35 (1997)
3851.
[31] J.P. Costes, F. Dahan, J.P. Laurent, Inorg. Chim. Acta 230 (1995) 199.
[32] A. Bottcher, H. Elias, E. Jager, H. Lanffelderova, M. Mazur, L. Mullor, H.
Paulus, P. Pelikan, M. Rudolph, M. Valko, Inorg. Chem. 32 (1993) 4131.
[33] H. Okawa, N. Matsumoto, M. Koikawa, K. Takeda, S. Kida, J. Chem. Soc.,
Dalton Trans. (1990) 1383.
A new oxamide-based ligand L has been designed and syn-
thesized in a simple route. The ligand shows fluorescence at
516 nm. Depending upon the metal ion concentration, the ligand
forms either mononuclear or binuclear complexes. In mononu-
clear complex, four nitrogens were coordinated to the metal ion
in cis manner and, two nitrogens and two oxygen atoms of the
polydentate ligand were coordinated to the metal ions, and the
binuclear complex is existed in the trans configuration. This
fluorescent compound can be useful as a fluorescent probe for
cations and anions. We are currently studying the recognition
behaviour of this receptor towards various halide anions and
transition metal cations to find the sensitivity and selectivity of
this receptor.
Acknowledgement
The authors acknowledge Department of Science and Tech-
nology, Government of India and Science City (Government of
Tamil Nadu), Chennai for financial assistance.
[34] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[35] R.C. Agarwal, N.K. Singh, R.P. Singh, Inorg. Chem. 20 (1981) 2794.