2720 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 9
Alloatti et al.
(13) (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H.-M.; Lin, C. M.;
Hamel, E. Synthesis and evaluation of analogues of (Z)-1-(4-
methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cyto-
toxic and antimitotic agents. J. Med. Chem. 1992, 35, 2293–2306. (b)
Tron, G. C.; Pagliai, F.; Del Grosso, E.; Genazzani, A. A.; Sorba, G.
Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem.
2005, 48, 3260–3268.
concentration of 10 µg/mL for 10 min at RT in the dark. Coverslips
were then mounted with 50% glycerol in PBS. Cells were analyzed
with an epifluorescent microscope (Polyvar, Zeiss AG, Germany)
and imaged with a cooled CCD camera (Photometrics, Roper
Scientific Inc., CA). Images were then processed with Metamorph
software (Universal Imaging, Downingtown, PA).
(14) Welch, J. T., Ed. SelectiVe Fluorination in Organic and Bioorganic
Chemistry; ACS Symposium Series 456: Washington D.C., 1991.
(15) Seebach, D. Organic synthesis-Where now. Angew. Chem., Int. Ed.
Engl. 1990, 29, 1320.
(16) Hertel, L. W.; Ternansky, R. J. Stud. Org. Chem. (Amsterdam) 1993,
48, 23.
(17) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. The polar hydrophobicity
of fluorinated compounds. ChemBioChem 2004, 5, 622–627.
(18) Giannini, G. Fluorinated anthracyclines: Synthesis and biological
activity. Med. Chem. ReV.sOnline 2004, 1, 47–71.
(19) Ringel, I.; Jaffe, D.; Alerhand, S.; Boye, O.; Muzaffar, A.; Brossi, A.
Fluorinated colchicinoids: Antitubulin and cytotoxic properties. J. Med.
Chem. 1991, 34, 3334–3338.
Acknowledgment. The authors would like to thank Dr.
Michel Simard (Université de Montréal) for X-ray analysis and
Prof. Stephen Hanessian for critical revision of the manuscript
and helpful suggestions.
1
Supporting Information Available: H NMR, 19F NMR, and
MS of new derivatives, as well as crystal data for compound 7.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(20) Hadfield, J. A.; McGown, A. T.; Mayalarp, S. P.; Land, E. J.; Hamblett,
I.; Gaukroger, K.; Lawrence, J. N.; Hepworth, L. A.; Butler, J.
Preparation of substituted stilbenes as antitumor agents, Patent
WO02050007, 2005.
(21) Gaukroger, K.; Hadfield, J. A.; Lawrence, N. J.; Nolan, S.; McGown,
A. T. Structural requirements for the interaction of combretastatins
with tubulin: how important is the trimethoxy unit. Org. Biomol. Chem.
2003, 1, 3033–3037.
References
(1) (a) Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.;
Garcia-Kendall, D. Isolation and structure of the strong cell growth
and tubulin inhibitor combretastatin A-4. Experientia 1989, 45, 209–
211. (b) Pettit, G. R.; Cragg, G. M.; Herald, D. L.; Schmidt, J. M.;
Lobavanijaya, P. Isolation and structure of combretastatin. Can.
J. Chem. 1982, 60, 1347–1376.
(2) Nam, N. H. Combretastatin A-4 analogues as antimitotic anti-tumor
agents. Curr. Med. Chem 2003, 10, 1697–1722, and references cited
therein.
(3) (a) Hori, K.; Saito, S. Microvascular mechanisms by which the
combretastatin A-4 derivative AC7700 (AVE8062) induces tumour
blood flow stasis. Br. J. Cancer 2003, 89, 1334–1344, and references
cited therein. (b) Hori, K.; Saito, S. Induction of tumour blood flow
stasis and necrosis: a new function for epinephrine similar to that of
combretastatin A-4 derivative AVE8062 (AC7700). Br. J. Cancer
2004, 90, 549–553. (c) Tozer, G. M.; Prise, V. E.; Wilson, J.; Locke,
R. J.; Vojnovic, B.; Stratford, M. R.; Dennis, M. F.; Chaplin, D. J.
Combretastatin A-4 phosphate as a tumor vascular-targeting agent:
Early effects in tumors and normal tissues. Cancer Res. 1999, 59,
1626–1634.
(4) Chaplin, D. J.; Hill, S. A. The development of combretastatin A4
phosphate as a vascular targeting agent. Int. J. Radiat. Oncol., Biol.,
Phys. 2002, 54, 1491–1496.
(5) Pettit, G. R.; Temple, C, Jr.; Narayanan, V. L.; Varma, R.; Boyd,
M. R.; Rener, G. A.; Bansal, N. Antineoplastic agents 322. Synthesis
of combretastatin A-4 prodrugs. Anti-Cancer Drug Des. 1995, 10, 299–
309.
(6) Pettit, G. R.; Lippert, J. W. Synthesis of the combretastatin A-1 and
combretastatin B-1 prodrugs. Anti-Cancer Drug Des. 2000, 15, 203–
216.
(7) Kirwan, I. G.; Loadman, P. M.; Swaine, D. J.; Anthoney, D. A.; Pettit,
G. R.; et al. Comparative preclinical pharmacokinetic and metabolic
studies of the combretastatin prodrugs combretastatin A4 phosphate
and A1 phosphate. Clin. Cancer Res. 2004, 10, 1446–1453.
(8) Hatanaka, T.; Fujita, K.; Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Nihei,
Y.; Suga, Y.; Akiyama, Y.; Tsuji, T. Novel B-ring modified combre-
tastatin analogues: syntheses and antineoplastic activity. Bioorg. Med.
Chem. Lett. 1998, 8, 3371–3374.
(9) Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.; Morinaga, Y.;
Nihei, Y.; Ohishi, K.; Suga, Y.; Akiyama, Y.; Tsuji, T. Novel
combretastatin analogues effective against murine solid tumors: Design
and structure-activity relationships. J. Med. Chem. 1998, 41, 3022–
3032.
(22) David, P. D. Preparation and use of cis-stilbenes with vascular
damaging activity, Patent WO0112579, 2001.
(23) Lawrence, J. N.; Hepworth, L. A.; Rennison, D.; McGown, A. T.;
and Hadfield, J. A. Synthesis and anticancer activity of fluorinated
analogues of combretastatin A-4. J. Fluorine Chem. 2003, 123, 101–
108.
(24) Ducki, S.; Mackenzie, G.; Lawrence, N. J.; Snyder, J. P. Quantitative
structure-activity relationship (5D-QSAR) study of combretastatin-
like analogues as inhibitors of tubuline assembly. J. Med. Chem. 2005,
48, 457–465.
(25) (a) Bellucci, G.; Berti, G.; Chiappe, C.; Lippi, A.; Marioni, F. The
metabolism of carbamazepine in humans: Steric course of the
enzymatic hydrolysis of the 10,11-epoxide. J. Med. Chem. 1987, 30,
768–773. (b) Kevin Park, B.; Kitteringham, N. R.; O’Neill, P. M.
Metabolism of fluorine-containing drugs. Annu. ReV. Pharmacol.
Toxicol. 2001, 41, 443–470. (c) Aprile, S.; Del Grosso, E.; Tron, G. C.;
Grosa, G. In vitro metabolism study of combretastatin A-4 in rat and
human liver microsomes. Drug Metab. Dispos. 2007, 35, 2252–2261.
(26) (a) Giannini, G., Fluorocombretastatin and derivatives thereof, Patent
WO05007603, 2005. (b) Drug Data Report, 2005; 27, 361, and
reference therein reported. (c) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai,
F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033–
3044. (d) Mahindroo, N.; et al. Antitubulin agents for the treatment
of cancer - a medicinal chemistry update. Expert Opin. Ther. Pat.
2006, 16, 647–691.
(27) Simoni, D.; Romagnoli, R.; Baruchello, R.; Rondanin, R.; Rizzi’, M.;
Pavani, M. G.; Alloatti, D.; Giannini, G.; Marcellini, M.; Riccioni,
T.; Castorina, M.; Guglielmi, M. B.; Bucci, F.; Carminati, P.; Pisano,
C. Novel combretastatin analogues endowed with antitumor activity.
J. Med. Chem. 2006, 49, 3143–3152.
(28) Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.;
Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex
with colchicine and a stathmin-like domain. Nature 2004, 428, 198–
202.
(29) Shimizu, M.; Yamada, N.; Takebe, Y.; Hata, T.; Kuroboshi, M.;
Hiyama, T. Generation and carbonyl addition reactions of dibromof-
luoromethyllithium derived from tribromofluoromethane as applied
to the stereoselective synthesis of fluoro olefins and 2-bromo-2-fluoro-
1,3-alkanediols. Bull. Chem. Soc. Jpn. 1998, 71, 2903–2921.
(30) Burton, D. J.; Yang, Z. Y.; Qiu, W. Fluorinated ylides and related
compounds. Chem. ReV. 1996, 96, 1641–1715.
(10) Lawrence, N. J.; Ghani, F. A.; Hepworth, L. A.; Hadfield, J. A.;
McGown, A. T.; Pritchard, R. G. The synthesis of E- and Z-
combretastatin A-4 and a phenantrene from Combretum caffrum.
Synthesis 1999, 9, 1656–1660.
(31) Pettit, G. R.; Moser, B. R.; Boyd, M. R.; Schmidt, J. M.; Pettit, R. K.;
Chapuis, J. C. Antineoplastic agents 460. Synthesis of combretastatin
A-2 prodrugs. Anti-Cancer Drug Des. 2001, 16, 185–193.
(32) Pettit, G. R.; Rhodes, M. R.; Herald, D. L.; Hamel, E.; Schmidt, J. M.;
Pettit, R. K. Antineoplastic agents. 445. Synthesis and evaluation of
structural modifications of (Z)- and (E)-combretastatin A-4. J. Med.
Chem. 2005, 48, 4087–4099, and references cited therein.
(33) Ismail, F. Important fluorinated drugs in experimental and clinical use.
J. Fluorine Chem. 2002, 118, 27–33.
(11) Simoni, D.; Grisolia, G.; Giannini, G.; Roberti, M.; Rondanin, R.;
Piccagli, L.; Baruchello, R.; Rossi, R.; Romagnoli, R.; Invidiata, F. P.;
Grimaudo, S.; Jung, M. K.; Hamel, H.; Gebbia, N.; Crosta, L.;
Abbadessa, V.; Di Cristina, A.; Dusonschet, L.; Meli, M.; Tolomeo,
M. Heterocyclic and phenyl double-bond-locked combretastatin
analogues possessing potent apoptosis-inducing activity in HL60 and
in MDR cell lines. J. Med. Chem. 2005, 48, 723–736.
(12) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.;
Hannic, S. M.; Gherke, L.; Credo, R. B.; Hui, Y. H.; Marsh, K.;
Warner, R. L.; Jang, Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg,
S. H.; Sham, H. L. Potent, orally active heterocycle-based Combre-
tastatin A-4 analogues: Synthesis, structure-activity relationship,
pharmacokinetics, and in vivo antitumor activity evaluation. J. Med.
Chem., 2002, 45, 1697–1711.
(34) Maestro, Version 8.0, Impact, Version 4.5, Schrödinger, LLC: New
York, NY, 2007.
(35) Goodford, P. A computational procedure for determining energetically
favorable binding sites on biologically important macromolecules.
J. Med. Chem. 1985, 28, 849–857.