104
I.V. Yampolsky et al. / Bioorganic Chemistry 36 (2008) 96–104
[8] N. Pletneva, S. Pletnev, T. Tikhonova, V. Popov, V. Martynov, V.
Pletnev, Acta Crystallogr. D Biol. Crystallogr. 62 (2006) 527–532.
[9] X. Shu, N.C. Shaner, C.A. Yarbrough, R.Y. Tsien, S.J. Remington,
Biochemistry 45 (2006) 9639–9647.
[10] R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, A. Miyawaki,
Proc. Natl. Acad. Sci. USA 99 (2002) 12651–12656.
[11] H. Mizuno, T.K. Mal, K.I. Tong, R. Ando, T. Furuta, M. Ikura, A.
Miyawaki, Mol. Cell 12 (2003) 1051–1058.
[12] K. Nienhaus, G.U. Nienhaus, J. Wiedenmann, H. Nar, Proc. Natl.
Acad. Sci. USA 99 (2005) 9156–9159.
[13] I. Hayashi, H. Mizuno, K.I. Tong, T. Furuta, F. Tanaka, M.
Yoshimura, A. Miyawaki, M. Ikura, J. Mol. Biol. 372 (2007) 918–
926.
[14] J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Ro¨cker, A.
Salih, K.-D. Spindler, G.U. Nienhaus, Proc. Natl. Acad. Sci. USA
101 (2004) 15905–15910.
[15] S.A. Wacker, F. Oswald, J. Wiedenmann, W.A. Knochel, Dev. Dyn.
236 (2007) 473–480.
[16] H. Tsutsui, S. Karasawa, H. Shimizu, N. Nukina, A. Miyawaki,
EMBO Rep. 6 (2005) 233–238.
[17] N.G. Gurskaya, V.V. Verkhusha, A.S. Shcheglov, D.B. Staroverov,
T.V. Chepurnykh, A.F. Fradkov, S. Lukyanov, K.A. Lukyanov, Nat.
Biotechnol. 24 (2006) 461–465.
nated indole moiety. Potentially, introducing Arg and Lys
residues in the vicinity of chromophore-forming Trp66 into
ECFP (or similar mutants) could result in novel (and
potentially useful) fluorescent protein variant where Trp-
containing chromophore exists in anionic state.
One of the most interesting results of the present work is
that non-aromatic asparagine moiety provides a strong red
shift in NYG chromophore. In case of Asn65, Kaede-like
chromophore includes additional C@O group in the system
of conjugated double bonds. It was shown earlier that
C@O group indeed ensures a very strong (about 100 nm)
red shift for asFP595-like chromophore compared to
GFP chromophore [28]. Considering also a small size of
Asn side chain, this residue appeared to be a promising
substituent, which can potentially diversify posttransla-
tional chemistry in GFP-like proteins. It is tempting to
insert Asn not only at position 65 in a Kaede-like protein,
but also at position 66 (instead of chromophore-forming
Tyr) in a green FP. In this case one would expect blue fluo-
rescent mutant with a different (compared to all other blue
fluorescent variants) chromophore structure and photo-
physical behavior. These mutagenesis projects are currently
underway in our laboratory.
[18] T. Mutoh, T. Miyata, S. Kashiwagi, A. Miyawaki, M. Ogawa, Exp.
Neurol. 200 (2006) 430–437.
[19] K. Hatta, H. Tsujii, T. Omura, Nat. Protoc. 1 (2006) 960–967.
[20] E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych,
J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess,
Science 313 (2006) 1642–1645.
Acknowledgments
[21] L. Zhang, N.G. Gurskaya, E.M. Merzlyak, D.B. Staroverov, N.N.
Mudrik, O.N. Samarkina, L.M. Vinokurov, S. Lukyanov, K.A.
Lukyanov, Biotechniques 42 (2007) 446–448, 450.
[22] H. Niwa, S. Inouye, T. Hirano, T. Matsuno, S. Kojima, M. Kubota,
M. Ohashi, F.I. Tsuji, Proc. Natl. Acad. Sci. USA 93 (1996)
13617–13622.
We thank Dr. Andrey Formanovsky, Igor Prokhorenko
and Vadim Kublitsky for their help. This work was sup-
ported by grants from Molecular and Cell Biology Pro-
gram RAS, Howard Hughes Medical Institute Grant
HHMI 55005618, National Institutes of Health USA
(GM070358), Russian Foundation for Basic Research
grant 05-04-49316. K.A.L. is supported by Russian Science
Support Foundation.
[23] X. He, A.F. Bell, P.J. Tonge, J. Phys. Chem.
6056–6066.
B 106 (2002)
[24] A. Follenius-Wund, M. Bourotte, M. Schmitt, F. Iyice, H. Lami, J.J.
Bourguignon, J. Haiech, C. Pigault, Biophys. J. 85 (2003) 1839–1850.
[25] B. Hager, B. Schwarzinger, H. Falk, Monatsh. Chem. 137 (2006)
163–168.
[26] B. Pruger, T. Bach, Synthesis 2007 (2007) 1103–1106.
¨
[27] X. He, A.F. Bell, P.J. Tonge, Org. Lett. 4 (2002) 1523–1526.
[28] I.V. Yampolsky, S.J. Remington, V.I. Martynov, V.K. Potapov, S.
Lukyanov, K.A. Lukyanov, Biochemistry 44 (2005) 5788–5793.
[29] S. Harusawa, M. Kawamura, S. Koyabu, T. Hosokawa, L. Araki, Y.
Sakamoto, T. Hashimoto, Y. Yamamoto, A. Yamatodani, T.
Kurihara, Synthesis 2003 (2003) 2844–2850.
[30] P. Zhang, R. Liu, J.M. Cook, Tetrahedron Lett. 36 (1995) 3103–3106.
[31] B.J. Bevis, B.S. Glick, Nat. Biotechnol. 20 (2002) 83–87.
[32] S. Kojima, H. Ohkawa, T. Hirano, S. Maki, H. Niwa, M. Ohashi, S.
Inouye, F.I. Tsuji, Tetrahedron Lett. 39 (1998) 5239–5242.
[33] Y.A. Labas, N.G. Gurskaya, Y.G. Yanushevich, A.F. Fradkov, K.A.
Lukyanov, S.A. Lukyanov, M.V. Matz, Proc. Natl. Acad. Sci. USA
99 (2002) 4256–4261.
References
[1] S.J. Remington, Curr. Op. Struct. Biol. 16 (2006) 1–8.
[2] D.M. Chudakov, S. Lukyanov, K.A. Lukyanov, Trends Biotechnol.
23 (2005) 605–613.
[3] L.A. Gross, G.S. Baird, R.C. Hoffman, K.K. Baldridge, R.Y. Tsien,
Proc. Natl. Acad. Sci. USA 97 (2000) 11990–11995.
[4] D. Yarbrough, R.M. Wachter, K. Kallio, M.V. Matz, S.J. Reming-
ton, Proc. Natl. Acad. Sci. USA 98 (2001) 462–467.
[5] V.V. Verkhusha, D.M. Chudakov, N.G. Gurskaya, S. Lukyanov,
K.A. Lukyanov, Chem. Biol. 11 (2004) 845–854.
[6] M.L. Quillin, D.M. Anstrom, X. Shu, S. O’Leary, K. Kallio, D.M.
Chudakov, S.J. Remington, Biochemistry 44 (2005) 5774–5787.
[7] S.J. Remington, R.M. Wachter, D.K. Yarbrough, B. Branchaud,
D.C. Anderson, K. Kallio, K.A. Lukyanov, Biochemistry 44 (2005)
202–212.
[34] V. Helms, Curr. Opin. Struct. Biol. 12 (2002) 169–175.
[35] A.V. Nemukhin, I.A. Topol, Stanley K. Burt, J. Chem. Theory
Comput. 2 (2006) 292–299.