2584 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 8
Brief Articles
the mixture stirred under reflux for another 2 h and subsequently
at room temperature overnight. The mixture was poured into
water, and the two phases were partitioned. The water phase
was extracted twice with DCM. The collected organic phases
were washed with H2O, brine, and H2O, dried over Na2SO4, and
concentrated under vacuum. The final product was purified by
column chromatography on SiO2.
References
(1) Ono, K.; Han, J. The p38 signal transduction pathway. Activation and
function. Cell. Signalling 2000, 12, 1–13.
(2) Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar,
S.; Green, D.; McNulty, D.; Blumenthal, M. J.; Heyes, J. R. A protein
kinase involved in the regulation of inflammatory cytokine biosyn-
thesis. Nature 1994, 372, 739–746.
(3) Laufer, S. A.; Zimmermann, W.; Ruff, K. J. Tetrasubstituted imidazole
inhibitors of cytokine release: probing substituents in the N-1 position.
J. Med. Chem. 2004, 47, 6311–6325.
(4) Laufer, S. A.; Striegel, H. G.; Wagner, G. K. Imidazole inhibitors of
cytokine release: probing substituents in the 2 position. J. Med. Chem.
2002, 45, 4695–4705.
(5) Laufer, S.; Striegel, H.-G.; Tollmann, K.; Albrecht, W. Preparation
of 2-Methylsulfanyl-3H-imidazoles and Related Compounds as Im-
munomodulators. 2002-10238045[10238045], 31; DE. 20-8-2002,
2004; Merckle G.m.b.H.Chem.-Pharm.Fabrik,Germany.
4-[3-(4-Fluorophenyl)-5-methoxyisoxazol-4-yl]pyridine (7a).
7a was obtained according to general procedure I by reacting 111
µL (1.8 mmol) of methyl iodide and 256 mg (1 mmol) of 6 and
subsequent purification by column chromatography on SiO2 (eluent
THF). Yield 160 mg (22%); C15H11FN2O2 (MW 270.26); mp 229
1
°C; H NMR (DMSO-d6) δ (ppm) 3.84 (s, 3H, -CH3), 7.29–7.51
(m, 6H), 8.03–8.06 (d, 2H); 13C NMR (DMSO-d6) δ (ppm) 45.0,
85.4 (C4 Isox), 115.7, 116.3 (J)22.0, C4 4FPh), 128.9 (J ) 2.9,
C2 4FPh), 129.3 (J ) 8.5, C3/C5 4FPh), 142.1, 149.1, 161.4 (C3
Isox), 163.0 (J ) 229.0 Hz, C1 4FPh), 174.0 (C5 Isox); FTIR 3049,
2965, 1676, 1619, 1517, 1475, 1443, 1415, 1366, 1219, 1202, 956,
883, 844 cm-1; MS 271 (M + 1), 254, 243, 227, 212, 134, 94.
Anal. (C15H11FN2O2) C, H, N, O.
(6) Adams, J. L.; Boehm, J. C.; Kassis, S.; Gorycki, P. D.; Webb, E. F.;
Hall, R.; Sorenson, M.; Lee, J. C.; Ayrton, A.; Griswold, D. E.;
Gallagher, T. F. Pyrimidinylimidazole inhibitors of CSBP/p38 kinase
demonstrating decreased inhibition of hepatic cytochrome P450
enzymes. Bioorg. Med. Chem. Lett. 1998, 8, 3111–3116.
N-Alkylation of 9. General Procedure II. To a suspension of
9 (1 equiv) in DMF (2 mL/1mmol 9) was added 1.8 equiv of Et3N,
and the mixture was refluxed for 2 h. The cooled mixture (room
temperature) was combined with alkyl halide (1.5 equiv) (if not
specified otherwise, the chloride was used) and stirred for 3 h at
room temperature. The reaction was worked up following method
a, b, or c depending on the nature of the residue.
(7) Laufer, S. A.; Margutti, S.; Fritz, M. D. Substituted isoxazoles as potent
inhibitors of p38 MAP kinase. ChemMedChem 2006, 1, 197–207.
(8) Clark, M. P.; Djung, J. F.-J.; Laughlin, S. K.; Tullis, J. S.; Natchus,
M. G.; De, B. Isoxazolones Useful in Treating Diseases Associated
with Unwanted Cytokine Activity. 2002-US15431[2002094266], 69;
WO 15-5-2002, 2002; The Procter & Gamble Company.
(9) Laughlin, S. K.; Clark, M. P.; Djung, J. F.; Golebiowski, A.; Brugel,
T. A.; Sabat, M.; Bookland, R. G.; Laufersweiler, M. J.; VanRens,
J. C.; Townes, J. A.; De, B.; Hsieh, L. C.; Xu, S. C.; Walter, R. L.;
Mekel, M. J.; Janusz, M. J. The development of new isoxazolone based
inhibitors of tumor necrosis factor-alpha (TNF-R) production. Bioorg.
Med. Chem. Lett. 2005, 15, 2399–2403.
(10) Dannhardt, G.; Laufer, S.; Obergrusberger, I. A new synthesis of 3,4-
diaryl-5-oxo-4,5-dihydroisoxazoles and their transformation to 5-[N-
(w-aminoalkyl)amino]isoxazoles and 5-(2-aminoethylthio)isoxazoles.
Synthesis 1989, 27, 5–280.
(11) Elguero, J., Marzin, C., Katritzky, A. R., Linda, P., Eds. AdVances in
Heterocyclic Chemistry, Supplement 1: The Tautomerism of Hetero-
cycles; Academic Press: New York, 1976; p 656.
4-(4-Fluorophenyl)-3-(pyridin-4-yl)-2-tosylisoxazol-5(2H)-
one (10p). 10p was synthesized according to general procedure II
by reacting 1.36 g (7.2mmol) of 4-methylbenzenesulfonyl chloride
with 1 g (3.9 mmol) of 9. Purification following method c
(crystallization from acetone) afforded the title compound. Yield
1
50 mg (3%); C21H15FN2O4S (MW 410.07); mp 198 °C; H NMR
(DMSO-d6) δ (ppm) 2.51 (s, 3H, -CH3), 6.96–7.26 (m, 4H),
7.37–7.43 (m, 4H), 7.64 (dd, J ) 0.5/1.4 Hz; 2H, Py), 8.78 (dd, J
) 0.5/1.4 Hz; 2H, Py); 13C NMR (DMSO-d6) δ (ppm) 21.8, 114.9
(C4 isoxazolone), 116.1 (J ) 19.1 Hz, C2/C6 4FPh), 121.4 (J )
3.5, C4 4FPh), 121.9, 125.8, 126.9, 127.6, 130.3 (J ) 8.4 Hz, C3/
C5 4FPh), 140.5, 147.6, 149.9, 155.6 (C3 isoxazolone), 163.0 (J )
251.0 Hz, C1 4FPh), 167.0 (C5 isoxazolone); FTIR 3053, 1770,
1638, 1590, 1509, 1384, 1228, 1173, 1158, 954, 848, 812, 690
cm-1. Anal. (C21H15FN2O4S) C, H, N, O.
(12) Kohler, E. P.; Blatt, A. H. Diphenylisoxazolone. Study of the
tautomerism of isoxazolones. J. Am. Chem. Soc. 1928, 50, 504–515.
(13) Katritzky, A. R.; Barczynski, P.; Ostercamp, D. L.; Yousaf, T. I.
Mechanisms of heterocyclic ring formations. 4. A carbon-13 NMR
study of the reaction of b-keto esters with hydroxylamine. J. Org.
Chem. 1986, 51, 4037–4042.
General Procedure III. To a solution of 9 (1 equiv) in DMF (1
mL/1mmol of 9), sodium hydride (1 equiv) and the appropriate
isocyanate (1.5 eq) were added. The mixture was stirred for 12 h
at room temperature and then combined with water. Filtration of
the formed precipitate afforded the pure title compound. A further
purification step was not necessary.
(14) Boulton, A. J.; Katritzky, A. R. Tautomerism of heteroaromatic
compounds with five-membered rings. I. 5-Hydroxyisoxazoles-5-
isoxazolones. Tetrahedron 1961, 12, 41–50.
(15) Franchini, P. F. Dipole moments and tautomerism of isoxazolin-5-
ones. Corsie Semin. Chim. 1968, 14, 23–25.
(16) Cencioni, R.; Franchini, P. F.; Orienti, M. Dipole moments of
5-substituted isoxazoles. I. Dipole moments and tautomerism of
isoxazolin-5-ones. Tetrahedron 1968, 24, 151–166.
(17) Jacquier, R.; Petrus, C.; Petrus, F.; Verducci, J. Azoles. LXXII.
Unequivocal synthesis and tautomerism of 3-isoxazolones. Bull. Soc.
Chim. Fr. 1970, 197, 8–1985.
(18) Frolund, B.; Jensen, L. S.; Guandalini, L.; Canillo, C.; Vestergaard,
H. T.; Kristiansen, U.; Nielsen, B.; Stensbol, T. B.; Madsen, C.;
Krogsgaard-Larsen, P.; Liljefors, T. Potent 4-Aryl- or 4-arylalkyl-
substituted 3-isoxazolol GABAA antagonists: synthesis, pharmacology,
and molecular modeling. J. Med. Chem. 2005, 48, 427–439.
(19) Chan, A. W. K.; Crow, W. D.; Gosney, I. Isothiazole chemistry. X.
Acylation, alkylation, and tautomerism in 3-hydroxyisothiazole. Tet-
rahedron 1970, 26, 2497–2506.
N-Ethyl-4-(4-fluorophenyl)-5-oxo-3-(pyridin-4-yl)isoxazole-
2(5H)-carboxamide (10r). 10rwas synthesized according to the
general procedure III starting from 1 g (3.9mmol) of 9 and 0.4 g
(5.8 mmol) of ethyl isocyanate. Yield 293 mg (23%);
1
C17H14FN3O3 (MW 327.1); mp 200 °C; H NMR (DMSO-d6) δ
(ppm) 1.03 (t, 3H), 3.08 (m, 2H), 7.08–7.25(m, 4H, 4FPh), 7.45
(d, 2H, J ) 1.6 Hz, Py), 8.45 (t, 1H, exch.), 8.65 (d, 2H, J )
1.6 Hz, Py); 13C NMR (DMSO-d6) δ (ppm) 14.9, 22.5, 105.5
(C4 isoxazolone), 115.9 (J ) 21.3 Hz, C2/C6 4FPh), 123.0 (J
)3.1, C4 4FPh), 124.2, 131.0 (J ) 7.9 Hz, C3/C5 4FPh), 136.9,
148.2, 149.9, 154.4 (C3 isoxazolone), 161.9 (J ) 240.0 Hz, C1
4FPh), 166.2 (C5 isoxazolone); FTIR 3072, 2923, 2854, 1750,
(20) Laufer, S.; Thuma, S.; Peifer, C.; Greim, C.; Herweh, Y.; Albrecht,
A.; Dehner, F. An immunosorbent, nonradioactive p38 MAP kinase
assay comparable to standard radioactive liquid-phase assays. Anal.
Biochem. 2005, 344, 135–137.
1723, 1579, 1508, 1219, 954, 841, 826 cm-1
(C17H14FN3O3) C, H, N, O.
. Anal.
Acknowledgment. EU-Craft Program, Project Macrocept
(FP6) and Andy Liedtke for helpful discussions and proofreading.
(21) Nobeli, I.; Price, S. L.; Lommerse, J. P. M.; Taylor, R. Hydrogen
bonding properties of oxygen and nitrogen acceptors in aromatic
heterocycles. J. Comput. Chem. 1997, 18, 2060–2074.
(22) Boehm, H. J.; Brode, S.; Hesse, U.; Klebe, G. Oxygen and nitrogen
in competitive situations: which is the hydrogen-bond acceptor?
Chem.sEur. J. 1996, 2, 1509–1513.
Supporting Information Available: General synthetic proce-
dures, spectral and analytical and biochemical experiments. This
material is available free of charge via the Internet at http://
pubs.acs.org.
JM701343F