Journal of the American Chemical Society
Page 4 of 5
1
2
Notes
The authors declare no competing financial interest.
3
4
ACKNOWLEDGMENT
Financial support by the Welch Foundation (AX-1788), the NSF
(CHE-1455061), NIGMS (SC3GM105579), and Max and Minnie
Tomerlin Voelcker Fund is gratefully acknowledged.
5
6
7
8
The dienylation reaction with 3-substituted sulfolenes 48-51 is
particularly advantageous, because it introduces an aryl group at
the more substituted double C–C bond, and it affords the syntheti-
cally challenging (1Z)-conjugated dienes. The syntheses of prod-
ucts 23, 30, 35, 36, and 72 were readily carried out on gram
scales. The structures of products 24, 64 and 73 were confirmed
by X-ray crystallography.
REFERENCES
9
(1) (a) Natural Products in Medicinal Chemistry, Hanessian, S.,
Ed.; Wiley-VCH: Weinheim, 2014. (b) Rychnovsky, S. D. Chem.
Rev. 1995; 95, 2021–2040. (b) Thirsk, C.; Whiting, A. J. Chem.
Soc., Perkin Trans. 1 2002, 999–1023. (c) Inano, H.; Suzuki, K.;
Ishii-Ohba, H.; Yamanouchi, H.; Takahashi, M.; Wakabayashi, K.
Carcinogenesis 1993, 14, 2157–2163. (d) Paik, I. H.; Xie, S. J.;
Shapiro, T. A.; Labonte, T.; Sarjeant, A. A. N.; Baege, A. C.;
Posner, G. H. J. Med. Chem. 2006, 49, 2731–2734.
(2) (a) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650–1667.
(b) Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction: Selected
Practical Methods, John Wiley & Sons, Ltd: Chichester, 2002. (c)
Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am.
Chem. Soc. 2005, 127, 7308–7309. (d) Du, H.; Zhao, B.; Shi, Y.
J. Am. Chem. Soc. 2007, 129, 762–763. (e) Liao, L.; Jana, R.;
Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133,
5784–5787. (f) Bohn, M. A.; Schmidt, A.; Hilt, G.; Dindaroğlu,
M.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2011, 50, 9689–9693.
(g) Leung, J. C.; Geary, L. M.; Chen T.-Y.; Zbieg, J. R.; Krische,
M. J. J. Am. Chem. Soc. 2012, 134, 15700–15703. (h) McNeill,
E.; Ritter, T. Acc. Chem. Res. 2015, 48, 2330–2343. (i) Timsina,
Y. N.; Sharma, R. K.; RajanBabu, T. V. Chem. Sci. 2015, 6,
3994–4008. (j) Yang, X.-H.; Dong, V. M. J. Am. Chem. Soc.
2017, 139, 1774–1777. (k) Sardini, S. R.; Brown, M. K. J. Am.
Chem. Soc. 2017, 139, 9823–9826. (l) Tortajada, A.; Ninokata,
R.; Martin, R. J. Am. Chem. Soc. 2018, 140, 2050–2053.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Experimental evidence supports the mechanism that involves
dienylsulfinate intermediates 7 (Scheme 1). No reaction was ob-
served when sulfolenes 47 and 48 were replaced with the corre-
sponding 1,3-dienes ((E)-1-cyclohexyl-1,3-butadiene and iso-
prene, respectively), indicating that cheletropic cycloelimination
of sulfur dioxide from sulfolenes is not involved in the catalytic
process. Similarly, no reaction was observed, when the sulfone
that had been produced by the substitution of 4-chloro group in
4,7-dichloroquinoline with sulfinate 2 was used instead of the
haloarene and sulfolene 1 (see Scheme S1 in the SI). This result
suggests that the reaction does not proceed through formation of
sulfones. However, diene 9 was formed in a nearly quantitative
yield and with exclusive E-diastereoselectivity, when sulfolene 1
and potassium methoxide were replaced with potassium sulfinate
(K+·Z-2). Further, when sulfolene 1 was heated at 110C with
potassium methoxide in THF, rapid formation of potassium sul-
finate (K+·Z-2) was observed (95% conversion in 10 min). Taken
together, these results indicate that the reaction proceeds through
formation of dienylsulfinates 7. The isomerization of sulfinate
K+·Z-2 to the E-diastereomer K+·E-2 was slower (7 : 1 Z/E ratio
after 1 h at 110 C in THF). This result may suggest that the E-
selectivity of the reactions with sulfolenes 1 and 44-47, and the Z-
selectivity with sulfolenes 48-51 may reflect the kinetic prefer-
ences of the catalytic steps that involve intermediates A-C
(Scheme 1).
(3) (a) Metzker, M. L.; Lu, J.; Gibbs, R. A. Science 1996, 271,
1420–1422. (b) Valente, A.; Mortreux, A.; Visseaux, M.; Zinck,
P. Chem. Rev. 2013, 113, 3836–3857. (c) Zaikov, G. E. Trends in
Polymer Chemistry. In Materials Chemistry: A Multidisciplinary
Approach to Innovative Methods; Friedrich, K., Zaikov, G. E.,
Haghi, A. K., Eds.; CRS Press: Boca Raton, 2016.
In conclusion, this paper describes a simple and practical, regio-
and stereoselective dienylation with readily available sulfolenes.
The operationally simple reaction produces substituted conjugated
dienes and polyenes on gram scales in a regio- and stereoselective
manner. The regio- and stereoselectivity are determined by the
substitution pattern in sulfolenes. While the E-selective dienyla-
tion is observed for sulfolenes 1, and 44-47, the reaction is Z-
selective for sulfolenes 48-51.
(4) (a) Hansen, A. L.; Ebran, J. P.; Ahlquist, M.; Norrby, P. O.;
Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349–3353. (b)
Negishi, E.-I.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hatto-
ri, H. Acc. Chem. Res. 2008, 41, 1474–1485. (c) Zheng, C.;
Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496–
16499. (d) Delcamp, J. H.; Gormisky, P. E.; White, M. C. J. Am.
Chem. Soc. 2013, 135, 8460–8463. For reviews, see: (e) Mehta,
G.; Prakash Rao, H. S. Synthesis of Conjugated Dienes and Poly-
enes. In Patai's Chemistry of Functional Groups; Rappoport, Z.,
Ed.; John Wiley & Sons, Ltd: Chichester, 1997. (f) De Paolis, M.;
Chataigner, I.; Maddaluno, J. Top. Curr. Chem. 2012, 327, 87–
146. For recent catalytic methods of synthesis of conjugated
dienes, see: (g) Hu, X.-H.; Zhang, J.; Yang, X.-F.; Xu, Y. H.;
Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 3169–3172. (h) Olivares,
A. M.; Weix, D. J. J. Am. Chem. Soc. 2018, 140, 2446–2449. (i)
Liu, M.; Yang, P.; Karunananda, M. K.; Wang, Y.; Liu, P.; Engle,
K. M. J. Am. Chem. Soc. 2018, 140, 5805–5813.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures; characterization data (PDF)
Crystallographic data for 24 (CIF)
Crystallographic data for 64 (CIF)
Crystallographic data for 73 (CIF)
(5) (a) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am.
Chem. Soc. 2008, 130, 466–468. (b) Lee, S. J.; Anderson, T. M.;
Burke, M. D. Angew. Chem., Int. Ed. 2010, 49, 8860–8863. (c)
Woerly, E. M.; Roy, J.; Burke, M. D. Nat. Chem. 2014, 6, 484–
491. (d) Li, J.; Grillo, A. S; Burke, M. D. Acc. Chem. Res. 2015,
48, 2297–2307.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡These authors contributed equally
(6) (a) Deagostino, A.; Prandi, C.; Tabasso, S.; Venturello, P.
Molecules 2010, 15, 2667–2685.
4
ACS Paragon Plus Environment