Dendrimer 9
Acknowledgements
A solution containing A1 (0.24 g, 0.46 mmol), P2 (0.043 g,
0.047 mmol), potassium carbonate (0.064 g, 0.46 mmol), and
18-crown-6 (0.12 g, 0.45 mmol) in DMF (7 cm3) was heated at
55 1C with stirring under argon atmosphere. After 4 h, the
reaction mixture was cooled to room temperature, and poured
into saturated ammonium chloride solution (100 cm3) to
precipitate the product. The precipitate was collected by
filtration, intensively washed with water, and dried in a
vacuum. Purification of the residue by the preparative HPLC
This research was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan and Suzuki Foundation. We
thank Prof. Shuichi Hiraoka of the University of Tokyo,
Japan.
References
1 (a) V. Sundstrom, T. Pullerits and R. van Grondelle, J. Phys.
Chem. B, 1999, 103, 2327; (b) S. Vasil’ev, P. Orth, A. Zouni, T. G.
Owens and D. Bruce, Proc. Natl. Acad. Sci. USA, 2001, 98, 8602;
(c) M. Z. Papiz, S. M. Prince, T. Howard, R. J. Cogdell and N. W.
Isaacs, J. Mol. Biol., 2003, 326, 1523; (d) A. Amunts, O. Drory and
N. Nelson, Nature, 2007, 447, 58.
2 (a) T. S. Balaban, Acc. Chem. Res., 2005, 38, 612; (b) A. Del
Guerzo, A. G. L. Olive, J. Reichwagen, H. Hopf and J.-P.
Desvergne, J. Am. Chem. Soc., 2005, 127, 17984–17985; (c) K. E.
Sapsford, L. Berti and I. L. Medintz, Angew. Chem., Int. Ed., 2006,
45, 4562; (d) J. A. A. W. Elemans, R. van Hameren, R. J. M. Nolte
and A. E. Rowan, Adv. Mater., 2006, 18, 1251; (e) R. F. Kelley, R.
H. Goldsmith and M. R. Wasielewski, J. Am. Chem. Soc., 2007,
129, 6384.
3 (a) D.-L. Jiang and T. Aida, Nature, 1997, 388, 454; (b) S. Gilat, A.
Adronov and J. M. J. Frechet, Angew. Chem., Int. Ed., 1999, 38,
1422; (c) A. Adronov and J. M. J. Frechet, Chem. Commun., 2000,
1701; (d) U. Hahn, M. Gorka, F. Vogtle, V. Vicinelli, P. Ceroni, M.
Maestri and V. Balzani, Angew. Chem., Int. Ed., 2002, 41, 3595; (e)
M. D. Yilmaz, O. A. Bozdemir and E. U. Akkaya, Org. Lett.,
2006, 8, 2871.
4 (a) C. Devadoss, P. Bharathi and J. S. Moore, J. Am. Chem. Soc.,
1996, 118, 9635; (b) M.-S. Choi, T. Aida, T. Yamazaki and I.
Yamazaki, Angew. Chem., Int. Ed., 2001, 40, 3194; (c) J. S.
Melinger, Y. Pan, V. D. Kleiman, Z. Peng, B. L. Davis, D.
McMorrow and M. Lu, J. Am. Chem. Soc., 2002, 124, 12002; (d)
R. Metivier, F. Kulzer, T. Weil, K. Mullen and T. Basche, J. Am.
Chem. Soc., 2004, 126, 14364; (e) A. Nantalaksakul, R. R. Dasari,
T.-S. Ahn, R. Al-Kaysi, C. J. Bardeen and S. Thayumanavan, Org.
Lett., 2006, 8, 2981; (f) T. S. Ahn, A. L. Thompson, P. Bharathi, A.
Muller and C. J. Bardeen, J. Phys. Chem. B, 2006, 110, 19810; (g)
N. Vijayalakshmi and U. Maitra, Macromolecules, 2006, 39, 7931.
5 M. Takahashi, H. Morimoto, Y. Suzuki, M. Yamashita and H.
Kawai, Polym. Prepr., 2004, 45, 959.
6 M. Takahashi, H. Morimoto, K. Miyake, M. Yamashita, H.
Kawai, Y. Sei and K. Yamaguchi, Chem. Commun., 2006, 3084.
7 (a) M. Takahashi, H. Morimoto, Y. Suzuki, M. Yamashita, H.
Kawai, Y. Sei and K. Yamaguchi, Tetrahedron, 2006, 62, 3065; (b)
M. Takahashi, H. Morimoto, Y. Suzuki, T. Odagi, M. Yamashita
and H. Kawai, Tetrahedron, 2004, 60, 11771; (c) M. Takahashi, T.
Odagi, H. Tomita, T. Oshikawa and M. Yamashita, Tetrahedron
Lett., 2003, 44, 2455; (d) M. Takahashi, H. Tomita, K. Aoshima,
T. Oshikawa and M. Yamashita, Polym. Prepr., 2001, 42, 282.
8 (a) C. J. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 1990,
112, 7638; (b) G. R. Newkome, C. N. Moorefield and F. Vogtle, in
Dendritic Molecules Concepts, Synthesis, Perspectives, VCH, Wein-
heim, New York, Basel, Cambridge, Tokyo, 1996, pp. 1–13.
9 For energy transfer dynamics, time-resolved fluorescence measure-
ments have been performed on the dendrimers. However, attempts
to record fluorescence decays failed due to limited time resolution
of experimental setup (100 ps of response time).
(chloroform as eluent) gave
9 (0.099 g, 44%) as an
orange-colored powder (Found: C, 82.8; H, 6.3. C332H308O32
requires C, 82.9; H, 6.5%); mp 103–104 1C (from
chloroform–hexane);
n
max(KBr)/cmÀ1 1591 (CQC) and
1716 (CO); dH (300 MHz; CDCl3; Me4Si) 0.90 (24H, t, J 6.8,
(CH2)5CH3), 1.27–1.42 (32H, m, (CH2)3(CH2)2CH3),
1.50–1.61 (16H, m, (CH2)2CH2(CH2)2CH3), 1.67–1.83 (16H,
m, CH2CH2(CH2)3CH3), 3.53 (16H, t, J 7.0, CH2(CH2)4CH3),
4.90 (16H, s, OCH2), 4.91 (16H, s, OCH2), 5.19 (8H, s, OCH2),
5.78 (16H, s, OCH2), 6.46–6.51 (4H, m, ArH), 6.54–6.61 (8H,
m, ArH), 6.62–6.67 (8H, m, ArH), 6.67–6.75 (16H, m, ArH),
7.20 (8H, t, J 8.4, ArH), 7.30 (32H, s, ArH), 7.38–7.48 (32H,
m, ArH), 7.87 (4H, d, J 8.0, ArH), 8.03 (4H, d, J 8.0, ArH) and
8.14–8.31 (32H, m, ArH); dC (75 MHz; CDCl3) 14.0 (q),
22.6 (t), 28.3 (t), 30.0 (t), 31.3 (t), 31.7 (t), 62.8 (t), 66.9 (t),
69.6 (t), 69.7 (t), 102.1 (d), 107.2 (d), 107.6 (d), 121.5 (d),
122.0 (d), 124.7 (d), 125.1 (d), 125.2 (d), 126.0 (d), 127.3 (s),
127.4 (s), 127.8 (d), 129.3 (s), 130.1 (d), 130.9 (s), 136.5 (s),
136.7 (s), 138.1 (s), 139.3 (s), 141.0 (s), 160.1 (s), 160.6 (s) and
168.2 (s).
Dendrimer 10
A solution containing A2 (0.20 g, 0.25 mmol), P2 (0.023 g,
0.025 mmol), potassium carbonate (0.064 g, 0.46 mmol), and
18-crown-6 (0.12 g, 0.45 mmol) in DMF (7 cm3) was heated at
55 1C with stirring under argon atmosphere. After 4 h, the
reaction mixture was cooled to room temperature, and poured
into saturated ammonium chloride solution (100 cm3) to
precipitate the product. The precipitate was collected by
filtration, intensively washed with water, and dried in a
vacuum. Purification of the residue by the preparative HPLC
(chloroform as eluent) gave 10 (0.082 g, 46%) as an orange-
colored powder (Found: C, 84.1; H, 6.8. C500H484O40 requires
C, 84.2; H, 6.8%); mp 133–134 1C (from chloroform–hexane);
n
max(KBr)/cmÀ1 1593 (CQC) and 1716 (CO); dH (300 MHz;
CDCl3; Me4Si) 0.89 (48H, t, J 6.8, (CH2)5CH3), 1.25–1.40
(64H, m, (CH2)3(CH2)2CH3), 1.45–1.61 (32H, m, (CH2)2C-
H2(CH2)2CH3), 1.64–1.81 (32H, m, CH2CH2(CH2)3CH3),
3.38–3.58 (32H, m, CH2(CH2)4CH3), 4.81 (16H, s, OCH2),
4.85 (16H, s, OCH2), 5.13 (8H, s, OCH2), 5.71 (32H, s, OCH2),
6.36–6.47 (24H, m, ArH), 6.50–6.64 (12H, m, ArH), 7.18–7.31
(32H, m, ArH), 7.32–7.48 (64H, m, ArH), 7.74–8.00 (8H, m,
ArH) and 8.05–8.30 (64H, m, ArH); dC (75 MHz; CDCl3)
14.0 (q), 22.6 (t), 28.3 (t), 29.9 (t), 31.3 (t), 31.7 (t), 62.8 (t),
69.6 (t), 69.7 (t), 94.4 (d), 94.9 (d), 107.1 (d), 121.5 (d), 124.7
(d), 125.0 (d), 126.0 (d), 127.3 (d), 127.7 (d), 127.8 (d), 129.3
(s), 130.9 (s), 136.5 (s), 138.0 (s), 160.0 (s), 160.9 (s), 161.3 (s)
and 168.2 (s).
10 B. Valeur, in Molecular Fluorescence Principles and Applications,
Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singa-
pore, Toronto, 2002, pp. 247–272.
11 N. J. Turro, in Modern Molecular Photochemistry, University
Science Books, Sausalito, CA, 1991, pp. 298–361.
12 W. H. Melhuish, J. Phys. Chem., 1963, 67, 1681.
13 The energy transfer efficiency was calculated from the relation, fET
= 1/[1 + (r/R0)6], where r is the interchromophore distance in the
structure and R0 is the Forster critical radius for the donor–
acceptor pair. Application of the above equation yielded the fET
values for the short- and long-range processes in a ratio of 1 : 0.94.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2008
552 | New J. Chem., 2008, 32, 547–553