Organometallics
Article
cyclization of 3. Stock solutions containing substrate 3, an internal
standard (hexamethylbenzene), and activator were prepared by
dissolving in deuterated solvent in a similar fashion as described
above. The activator, internal standard, and catalyst were added to a
predried screw cap NMR tube. Thereafter, the 1H NMR of the
reaction mixture was checked to ensure the complete abstraction of
the Zn−Me protons. A measured amount of aminoalkene substrate
was added to this solution, the NMR tube was sealed and placed at the
appropriate temperature, and the progress of the catalysis was
Arrowsmith, M.; Barrett, A. G. M.; Casely, I. J.; Hill, M. S.;
Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670−9685. (c) Barrett,
A. G. M.; Brinkmann, C.; Crimmin, M. R.; Hill, M. S.; Hunt, P.;
Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 12906−12907.
(d) Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc.
2005, 127, 2042−2043. (e) Datta, S.; Roesky, P. W. Organometallics
2007, 26, 4392−4394. (f) Zhang, X.; Emge, T. J.; Hultzsch, K. C.
Angew. Chem. 2012, 124, 406−410; Angew. Chem., Int. Ed. 2012, 51,
394−398. (g) Brinkmann, C.; Barrett, A. G. M.; Hill, M. S.; Procopiou,
P. A. J. Am. Chem. Soc. 2012, 134, 2193−2207. (h) Koller, J.; Bergman,
R. G. Chem. Commun. 2010, 46, 4577−4579. (i) Khandelwal, M.;
Wehmschulte, R. J. J. Organomet. Chem. 2012, 696, 4179−4183.
(4) (a) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129,
6149−6167. (b) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007,
129, 4253−4271. (c) Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J.
Am. Chem. Soc. 2003, 125, 14768−14783. (d) Arredondo, V. M.; Tian,
S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633−
3639. (e) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem.
Soc. 2006, 128, 3748−3759.
(5) (a) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem. 2011, 123,
1905−1908; Angew. Chem., Int. Ed. 2011, 50, 1865−1868. (b) Wood,
M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew.
Chem. 2007, 119, 358−362; Angew. Chem., Int. Ed. 2007, 46, 354−358.
(c) Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am.
Chem. Soc. 2009, 131, 18246−18247. (d) Allan, L. E. N.; Clarkson, G.
J.; Fox, D. J.; Gott, A. L.; Scott, P. J. Am. Chem. Soc. 2010, 132, 15308−
15320. (e) Knight, P. D.; Munslow, I.; O’Shaughnessy, P. N.; Scott, P.
Chem. Commun. 2004, 894−895. (f) Bexrud, J. A.; Beard, J. D.; Leitch,
D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959−1962. (g) Payne, P. R.;
Bexrud, J. A.; Leitch, D. C.; Schafer, L. L. J. Am. Chem. Soc. 2011, 133,
15453−15463. (h) Julian, L. D.; Hartwig, J. F. J. Am. Chem. Soc. 2010,
132, 13813−13822.
1
monitored by H NMR spectroscopy after described time intervals.
The concentrations of substrate and product were determined by
relative integration to a known concentration of hexamethylbenzene
dissolved in deuterated solvent.
Computational Details. Geometry optimizations and vibrational
frequency analyses were carried out without any symmetry constraints
at the level of density functional theory (DFT) based methods as
implemented in the electronic structure program Gaussian 03.27 We
used Beck’s three-parameter hybrid exchange functional28 combined
with the Lee−Yang−Parr nonlocal correlation function29 abbreviated
as B3LYP. The split-valence basis set with diffuse functions, namely, 6-
311++G, has been employed for all atoms. Vibrational frequencies
were calculated for optimized molecular structures to verify that no
negative frequencies were present for minimum energy structures.
X-ray Crystallographic Studies. The data of 1 and 2 were
collected from a shock-cooled crystal at 100(2) K30 on a Bruker
SMART-APEX II diffractometer with a D8 goniometer equipped with
a fine-focus INCOATEC Mo microsource.31 The data sets of the
compounds were integrated with SAINT,32 and an empirical
absorption correction (SADABS) was applied.33 The structures were
solved by direct methods (SHELXS-97) and refined by full-matrix
least-squares methods against F2 (SHELXL-97).34 All non-hydrogen
atoms were refined with anisotropic displacement parameters. The
hydrogen atoms were refined isotropically at calculated positions using
a riding model. CCDC-911744 (1) and CCDC-805581 (2) contain
the supplementary crystallographic data for this paper. These data can
be obtained free of charge from the Cambridge Crystallographic Data
(6) (a) Liu, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 1570−
1571. (b) Liu, Z.; Yamamichi, H.; Madrahimov, S. T.; Hartwig, J. F. J.
Am. Chem. Soc. 2011, 133, 2772−2782. (c) Hesp, K. D.; Tobisch, S.;
Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 413−426. (d) Cochran, B.
M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786−2792.
(e) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127,
1070−1071. (f) Wang, Z. J.; Benitez, D.; Tkatchouk, E.; Goddard, W.
A., III; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 13064−13071.
(g) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1166−
1167. (h) Chong, E.; Qayyum, S.; Schafer, L. L.; Kempe, R.
Organometallics 2013, 32, 1858−1865.
ASSOCIATED CONTENT
* Supporting Information
■
S
Complete ref 27, NMR of the stoichiometric reaction mixture,
NMR characterization data of the complexes, and X-ray
crystallographic details. This information is available free of
(7) (a) Jiang, T.; Livinghouse, T. Org. Lett. 2010, 12, 4271−4273.
(b) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115,
11485−11489. (c) McGrane, P. L.; Livinghouse, T. J. Org. Chem.
1992, 57, 1323−1324. (d) Patil, N. T.; Pahadi, N. K.; Yamamoto, Y.
Tetrahedron Lett. 2005, 46, 2101−2103. (e) Jones, T. H.; Blum, M. S.;
Fales, H. M.; Thompson, C. R. J. Org. Chem. 1980, 45, 4778−4780.
(f) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am.
Chem. Soc. 1999, 121, 3633−3639.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(8) (a) Zulys, A.; Dochnahl, M.; Hollmann, D.; Lohnwitz, K.;
̈
Herrmann, J.-S.; Roesky, P. W.; Blechert, S. Angew. Chem. 2005, 117,
7972−7976; Angew. Chem., Int. Ed. 2005, 44, 7794−7798.
ACKNOWLEDGMENTS
■
A.M. and T.K.S. are thankful to IISER-Kolkata and CSIR, India,
respectively for research fellowships. S.K.M. thanks SERB
(DST), New Delhi, India, for financial support.
(b) Dochnahl, M.; Lohnwitz, K.; Pissarek, J.-W.; Biyikal, M.; Schulz,
̈
S. R.; Schon, S.; Meyer, N.; Roesky, P. W.; Blechert, S. Chem.−Eur. J.
̈
2007, 13, 6654−6666. (c) Dochnahl, M.; Lohnwitz, K.; Luhl, A.;
Pissarek, J. W.; Biyikal, M.; Roesky, P. W.; Blechert, S. Organometallics
̈
̈
REFERENCES
2010, 29, 2637−2645. (d) Jenter, J.; Luhl, A.; Roesky, P. W.; Blechert,
̈
■
S. J. Organomet. Chem. 2011, 696, 406−418. (e) Biyikal, M.; Porta, M.;
Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870−1875.
(f) Pews-Davtyan, A.; Beller, M. Chem. Commun. 2011, 47, 2152−
2154. (g) Duncan, C.; Biradar, A. V.; Asefa, T. ACS Catal. 2011, 1,
736−750. (h) Luehl, A.; Nayek, H. P.; Blechert, S.; Roesky, P. W.
Chem. Commun. 2011, 47, 8280−8282.
(1) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435−446.
(2) (a) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M.
̈
Chem. Rev. 2008, 108, 3795−3892. (b) Hartwig, J. F. Nature 2008,
455, 314−322. (c) Roesky, P. W.; Muller, T. E. Angew. Chem. 2003,
̈
115, 2812−2814; Angew. Chem., Int. Ed. 2003, 42, 2708−2710.
(d) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673−686.
(e) Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367−391. (f) Hong,
S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673−686.
(3) (a) Dunne, J. F.; Fulton, D. B.; Ellern, A.; Sadow, A. D. J. Am.
Chem. Soc. 2010, 132, 17680−17683. (b) Crimmin, M. R.;
(9) (a) Pissarek, J.-W.; Schlesiger, D.; Roesky, P. W.; Blechert, S. Adv.
Synth. Catal. 2009, 351, 2081−2085. (b) Lohnwitz, K.; Molski, M. J.;
̈
Luhl, A.; Roesky, P. W.; Dochnahl, M.; Blechert, S. Eur. J. Inorg. Chem.
̈
2009, 1369−1375. (c) Biyikal, M.; Lohnwitz, K.; Meyer, N.; Dochnahl,
̈
7223
dx.doi.org/10.1021/om400906u | Organometallics 2013, 32, 7213−7224