aldolase,10 we have explored chiral primary amines in
pyruvate-aldol reactions. Herein, we report chiral primary-
tertiary diamine-Brønsted acid conjugates as effective and
general catalysts for the diastereo- and enantioselective direct
aldol reactions of pyruvic donors, thus functionally mimick-
ing the natural pyruvate-dependent type I aldolase.1a,2a
As a starting point, a variety of pyruvic derivatives were
briefly screened and pyruvic aldehyde acetals (e.g., 4a) were
identified as workable aldol donors in the catalysis of
primary-tertiary diamine 1. Only one report by Enders has
examined pyruvic aldehyde dimethyl acetal as a mask of
Figure 1. Chiral primary amine catalysts and pyruvic derivatives.
(4) For reviews on organocatalysis, see:(a) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2004, 43, 5138–5176. (b) Berkessel, A.; Groger,
H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005. (c) Seayad,
J.; List, B. Org. Biomol. Chem. 2005, 3, 719–724. (d) List, B. Acc. Chem.
Res. 2004, 37, 548. (e) Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem.
Res. 2004, 37, 580. For recent examples on organocatalytic aldol reactions,
see: (f) List, B.; A.Lerner, R.; Barbas, C. F J. Am. Chem. Soc. 2000, 122,
2395–2396. (g) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am.
Chem. Soc. 2001, 123, 5260–5267. (h) Bøgevig, A.; Kumaragurubaran, N.;
Jørgensen, K. A. Chem. Commun. 2002, 620. (i) Northrup, A. B.;
MacMillan, D.W. C. J. Am. Chem. Soc. 2002, 124, 6798. (j) Northrup,
A. B.; MacMillan, D. W. C. Science 2004, 305, 1752–1755. (k) Kano, T.;
Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 3055–
3057. (l) Enders, D.; Grondal, C. Angew. Chem., Int. Ed. 2005, 44, 1210–
1212. (m) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka,
F.; Barbas, C. F., III J. Am. Chem. Soc. 2006, 128, 734–735. (n) Hayashi,
Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew.
Chem., Int. Ed. 2006, 45, 958–961. (o) Samanta, S.; Liu, J.; Dodda, R.;
Zhao, C.-G. Org. Lett. 2005, 7, 5321–5323. (p) Chen, J.-R.; Lu, H.-H.; Li,
X.-Y.; Chen, L.; Wan, J.; Xiao, W.-J. Org. Lett. 2005, 7, 4543–4545. (q)
Tang, Z.; Jiang, F.; Yu, L.-T.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu,
Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (r) Tang, Z.; Yang, Z.-H.; Chen,
X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc.
2005, 127, 9285–9289. (s) Torri, H.; Nakadai, M.; Ishihara, K.; Saito, S.;
Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983–1986. (t) Kano, T.;
Yamaguchi, Y.; Tanaka, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2007,
46, 1738–1740.
pyruvate in the proline-catalyzed direct aldol reactions.5c The
reactions were very sluggish; however, only two aliphatic
aldehydes acceptors were tested which gave low yields but
good ee’s. We then selected the reaction of 4a and p-
nitrobenzaldehyde as a model for subsequent screening.
Notably, while both L-alanine and L-proline were totally
ineffective for catalysis of this reaction (Table 1, entries 1
Table 1. Selected Screening Results
entrya
cat. (mol %)
solvent
yielda (%)
eeb (%)
1
2
3
4
5
6
7
8
L-alanine
L-proline
1a/TfOH
1a
1b/TfOH
1c/TfOH
1d/TfOH
1e/TfOH
2
neat
neat
neat
neat
neat
neat
neat
neat
neat
neat
NMP
NMP
NMP
H2O
trace
trace
44
trace
42
66
6
44
trace
45
nd
nd
64%
nd
84
88
32
91
nd
36
92
93
93
90
(5) (a) Dambruoso, P.; Massi, A.; Dondoni, A. Org. Lett. 2005, 7, 4657–
4660. (b) Vincent, J.-M.; Margottin, C.; Berlande, M.; Cavagnat, D.;
Buffeteau, T.; Landais, Y. Chem. Commun. 2007, 4782–4784. (c) Enders,
D.; Gasperi, T. Chem. Commun. 2007, 88–90.
(6) For examples, see: (a) Tanaka, F.; Thayumanavan, R.; Mase, N.;
Barbas, C. F., III Tetrahedron Lett. 2004, 45, 325–328. (b) Amedjkouh,
M. Tetrahedron: Asymmetry 2005, 16, 1411–1414. (c) Pizzarello, S.; Weber,
A. L. Science 2004, 303, 1151–1151. (d) Davies, S. G.; Sheppard, R. L.;
Smith, A. D.; Thomson, J. E. Chem. Commun. 2005, 3802–3804. (e) Jiang,
Z.; Liang, Z.; Wu, X.; Lu, Y. Chem. Commun. 2006, 2801–2803. (f)
Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III J. Am. Chem.
Soc. 2007, 129, 288–289. (g) Hagiwara, H.; Uda, H. J. Org. Chem. 1988,
53, 2308–2311. (h) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006,
128, 7170–7171. (i) Lalonde, M. P.; Chen, Y. G.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2006, 45, 6366–6370. (j) Tsogoeva, S. B.; Wei, S. Chem.
Commun. 2006, 1451–1453. (k) Co´rdova, A.; Zou, W.; Dziedzic, P.;
Ibrahem, I.; Reyes, E.; Xu, Y. Chem.sEur. J. 2006, 12, 5383–5397. (l)
Co´rdova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W.-W.
Chem. Commun. 2005, 3586. (m) Zou, W.; Ibrahem, I.; Dziedzic, P.;
Sunde´n, H.; Co´rdova, A. Chem. Commun. 2005, 4946. (n) Ibrahem, I.; Zou,
W.; Engqvist, M.; Xu, Y.; Co´rdova, A. Chem. Eur. J. 2005, 11, 7024. (o)
Xu, Y.; Zou, W.; Sunde´n, H.; Ibrahem, I.; Co´rdova, A. AdV. Synth. Cat.
2006, 348, 418. (p) Xu, Y.; Co´rdova, A. Chem. Commun. 2006, 460. (q)
Liu, Y.; Cui, H.; Zhang, Y.; Jiang, K.; Du, W.; He, Z.; Chen, Y. Org. Lett.
2007, 9, 3671–3674. (r) Cheng, L.; Han, X.; Huang, H.; Wong, M.; Lu, Y.
Chem. Commun. 2007, 4143–4145.
9
10
11c
12c
3
1c/TfOH
1e/TfOH
1e/TfOH
1e/TfOH
62
71
90
71
13d e
,
14d
a Yield of isolated product. b Determined by chiral HPLC analysis. c
5
mol % of m-NO2PhCOOH was added. d In the presence of 20 mol % of
catalyst. e 10 mol % of m-NO2PhCOOH was added. nd: not determined.
and 2), simple primary-tertiary vicinal diamines such as
trans-N,N-dialkylated diaminocyclohexanes 1 turned out to
be very effective catalysts when combined with TfOH.
Among this series of catalysts examined, cyclohexanediamine
1c gave the best yield while 1e offered the best enantiose-
lectivity (Table 1, entries 5 and 6). Similar diphenylethylene
diamine 2 was virtually inactive for catalysis (Table 1, entry
8). The primary-sulfamide conjugate 3 also exhibited much
lower enenatioselectivity (Table 1, entry 9). These results
highlight the importance of the N,N-dialkylated diaminocy-
clohexanes skeleton. Consistent with our previous observa-
tions,9 a strong brønsted acid such as TfOH is essential for
(7) (a) Kano, T.; Yamaguchi, Y.; Tanaka, Y.; Maruoka, K. Angew.
Chem., Int. Ed. 2007, 46, 1738–1740. (b) Utsumi, N.; Imai, M.; Tanaka,
F.; Ramasastry, S. S. C.; Barbas, C. F. Org. Lett. 2007, 9, 3445–3448. For
similar catalysts, see: (c) Wu, X.; Jiang, Z.; Shen, H.-M.; Lu, Y. AdV. Synth.
Catal. 2007, 349, 812–816.
(8) Xu, X.-Y.; Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247–4249.
(9) (a) Luo, S. Z.; Xu, H.; Li, J. Y.; Zhang, L.; Cheng, J.-P. J. Am.
Chem. Soc. 2007, 129, 3074–3075. (b) Luo, S. Z.; Xu, H.; Zhang, L.; Li,
J. Y.; Cheng, J.-P. Org. Lett. 2008, 10, 653–656. (c) Luo, S. Z.; Li, J. Y.;
Zhang, L.; Xu, H.; Cheng, J.-P. Chem. Eur. J. 2008, 14, 1273–1281.
(10) Lawrence, M. C.; Barbosa, J. A.; Smith, B. J.; Hall, N. E.; Pilling,
P. A.; Ooi, H. C.; Marcuccio, S. M. J. Mol. Biol. 1997, 266, 381–399.
1776
Org. Lett., Vol. 10, No. 9, 2008