C O M M U N I C A T I O N S
Scheme 1
important entities for further detailed mechanistic investigations
which could lead to insights into copper promoted O-O cleavage
and new high-valent copper-oxo chemistry of chemical and
biochemical consequence.
Acknowledgment. This work was supported by a grant from
the National Institutes of Health (K.D.K., Grant GM28962).
Supporting Information Available: Synthetic details, descriptions
of reactions, product analyses/characterization, and CIF files. This
References
(1) (a) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115-122. (b) Klinman, J.
P. J. Biol. Chem. 2006, 281, 3013-3016. (c) McGuirl, M. A.; Dooley,
D. M. Copper Proteins with Type 2 Sites. In Encyclopedia of Inorganic
Chemistry, 2nd ed; King, R. B., Ed.; John Wiley & Sons Ltd.: Chichester,
2005; Vol. II, pp 1201-1225.
(2) (a) Prigge, S. T.; Eipper, B.; Mains, R.; Amzel, L. M. Science 2004, 304,
864-867. (b) Okeley, N. M.; Van der Donk, W. A. Chem. Biol. 2000, 7,
R159-R171. (c) Whittaker, M. M.; Whittaker, J. W. J. Biol. Chem. 2003,
278, 22090-22101.
(3) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. ReV. 2004,
104, 1013-1045. (b) Lewis, E. A.; Tolman, W. B. Chem. ReV. 2004,
104, 1047-1076. (c) Quant Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem.
2004, 9, 669-683.
(4) Chen, P.; Solomon, E. I. J. Am Chem. Soc. 2004, 126, 4991-5000.
(5) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9, 152-163.
(6) (a) Crespo, A.; Marti, M. A.; Roitberg, A. E.; Amzel, L. M.; Estrin, D.
A. J. Am. Chem. Soc. 2006, 128, 12817-12828. (b) Yoshizawa, K.;
Kihara, N.; Kamachi, T.; Shiota, Y. Inorg. Chem. 2006, 45, 3034-3041.
(7) Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon, E. I.;
Karlin, K. D. J. Am. Chem. Soc. 2007, 129, 264-265.
(8) Fujii, T.; Naito, A.; Yamaguchi, S.; Wada, A.; Funahashi, Y.; Jitsukawa,
K.; Nagatomo, S.; Kitagawa, T.; Masuda, H. Chem. Commun. 2003,
2700-2701.
been attributed to dinuclear complexes, either η2:η2-peroxodicopper-
(II) or bis-µ-oxo dicopper(III) species.3b,16 We suggest a mechanism
where the CuII--OOH moiety undergoes O-O cleavage, leading
to a high-valent copper-oxo species which attacks the aryl
group.17-20 This suggestion is compelling since for an iron complex
with a nearly identical 6-PhTPA ligand {6-PhTPA is like 6tBP but
with a 6-phenyl rather than 6-(4-tBuphenyl) group on one pyridyl
arm}, Que and co-workers21 established homolytic cleavage from
an FeIII--OOR species to give an FeIVdO moiety which effects
ligand aryl hydroxylation.22
To investigate the possibility that a dioxygen derived species
may rather be effecting this aryl hydroxylation, we examined the
product(s) of O2 reaction with a copper(I) complex of 6tBP, [(6tbp)-
CuI]+ (3, X-ray, Scheme 1). Bubbling O2 directly through a -80
°C THF solution of 3 results in a color change from light to bright
brownish-yellow, giving an EPR silent bis-µ-oxo-dicopper(III)
complex [{(6tbp)CuIII}2(O)2]2+ (4), λmax ) 383 nm (ꢀ ) 7000 M-1
cm-1) (Scheme 1). The formulation is based on well-established
spectral signatures3a and the result is identical to that recently
reported for a [(6-PhTPA)CuI]+/O2 reaction [6-PhTPA described
(9) Yamaguchi, S.; Masuda, H. Sci. Technol. AdV. Mat. 2005, 6, 34-47.
(10) Dinuclear copper-oxo species, CuIII2(O2-)2 complexes, are well known.3
(11) (a) Itoh, K.; Hayashi, H.; Furutachi, H.; Matsumoto, T.; Nagatomo, S.;
Tosha, T.; Terada, S.; Fujinami, S.; Suzuki, M.; Kitagawa, T. J. Am. Chem.
Soc. 2005, 127, 5212-5223. (b) Li, L.; Sarjeant, A. A. N.; Vance, M. A.;
Zakharov, L. N.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. D. J. Am.
Chem. Soc. 2005, 127, 15360-15361.
above], giving [{(6-PhTPA)CuIII}2(O)2]2+ (5), νCu-O ) 599 cm-1 23
.
(12) Mizuno, M.; Honda, K.; Cho, J.; Furutachi, H.; Tosha, T.; Matsumoto,
T.; Fujinami, S.; Kitagawa, T.; Suzuki, M. Angew. Chem., Int. Ed. 2006,
45, 6911-6914.
Complex 4 in THF is unstable even at -80 °C, decomposing within
15 min and affording oxidized solvent, 2-hydroxy-THF (∼40%)
and γ-butyrolactone (<5%).13 When the formation of 4 was carried
out in toluene at -80 °C, thermal decomposition produces PhCHO
(35%) with 70% 18-O incorporation (giving PhCH18O) when using
18O2 labeled 4. The reaction of 4 with 2,4-di-tert-butylphenol in
diethyl ether produces the typical oxidative coupling product
4,4′,6,6′-tetra-t-butyl-2,2′-biphenol (50%) after low-temperature
reaction, warming, and workup (Scheme 1).
The reactivity of [{(6tbp)CuIII}2(O)2]2+ (4) with substrates
parallels the behavior known for [CuIII2(O)2]2+ species.3 Warming
[{(6-PhTPA)CuIII}2(O)2]2+ (5) gives a trace of oxidatively N-
dealkylated ligand decomposition products.23 Thus, it appears that
neither 4 nor 5 effect aryl hydroxylation chemistry, which does
howeVer deriVe from the CuII--OOH complex [(6tbp)CuII(-OOH)]+
(2). The lack of aryl ring hydroxylation of 6tBP or 6-PhTPA by
the [CuIII2(O)2]2+diamond core may be attributed to axial positioning
of the arylpyridyl arm, precluding a geometry favorable for oxo-
atom attack and transfer to the pendant aryl group.23 Axial ligand
elongation is observed for 6-substituted 2-pyridyl ligand arms in
[{(6-Me2TPA)CuIII}2(O)2]2+ (5) (X-ray).24,25 However, the proximity
of a reactive species and aryl substrate in the 6-position of a
coordinating pyridyl ligand does lead to aryl hydroxylation for [(6-
PhTPA)FeIII(-OOR)]2+, as mentioned above, in our complex
[(6tbp)CuII(-OOH)]+ (2) and for a CuIII2(O2-)2 species supported
by the bidentate 2-(diethylaminomethyl)-6-phenylpyridine ligand.26
In summary, the chemistry presented reveals that a significant
aryl hydroxylation chemistry can be effected by a discrete mono-
nuclear CuII-hydroperoxo complex or derived species. The reaction
does not proceed from bis-µ-oxo-dicopper(III) chemistry. [(6tbp)CuII-
(-OOH)]+ (2) or complexes of similar design may now serve as
(13) See Supporting Information.
(14) Yamaguchi, S.; Kumagai, A.; Nagatomo, S.; Kitagawa, T.; Funahashi,
Y.; Ozawa, T.; Jitsukawa, K.; Masuda, H. Bull. Chem. Soc. Jpn. 2005,
78, 116-124.
(15) In fact, UV-vis & EPR spectroscopy, along with ESI-MS interrogation
indicates low-temperature formation of solutions with Cu(II) plus a
phenoxyl radical (thus oxygenation has already occurred) when reaction
solutions are left at -44 °C.13 No evidence was obtained which could
relate to the identification of any new species, for example, a cupryl
species.
(16) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.;
Solomon, E. I.; Stack, T. D. P. Science 2005, 308, 1890-1892.
(17) We note that in similarly constructed CuII--OOH complexes with
modified TMPA frameworks, Masuda14,18 has shown that a 6-N-H group
on pyridyl-ligand arms hydrogen-bonds to the proximal oxygen atom of
a CuII-hydroperoxo group. Thus, the ortho C-H substrate of the 6-aryl
moiety of 6tBP may certainly be in close proximity to either a hydroperoxo
O-atom of [(6tbp)CuII(-OOH)]+ (2) or oxo atom of a high-valent Cu-O
intermediate.
(18) Wada, A.; Harata, M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.; Mukai,
M.; Kitagawa, T.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 798-
799.
(19) Perhaps the reaction occurs by concerted attack of the -OOH in 2 on the
aryl substrate. Otherwise, Yu and coworkers20 recently describe the Cu-
(II)-promoted aryl hydroxylation of a 2-phenylpyridyl moiety, suggesting
the reaction proceeds via electron-transfer giving an aryl cation-radical,
nucleophilic ring attack, etc.
(20) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006,
128, 6790-6791.
(21) Jensen, M. P.; Lange, S. J.; Mehn, M. P.; Que, E. L.; Que, L. J. Am
Chem. Soc. 2003, 125, 2113-2128.
(22) Seo, M. S.; Kamachi, T.; Kouno, T.; Murata, K.; Park, M. J. P.; Yoshizawa,
K.; Nam, W. Angew. Chem., Int. Ed. 2007, 46, 2291-2294.
(23) Jensen, M. P.; Que, E. L.; Shan, X. P.; Rybak-Akimova, E.; Que, L. Dalton
Trans. 2006, 3523-3527.
(24) 6-Me2TPA ) (2-pyridylmethyl)bis(6-methyl-2-pyridylmethyl)amine.
(25) Hayashi, H.; Fujinami, S.; Nagatomo, S.; Ogo, S.; Suzuki, M.; Uehara,
A.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 2000, 122, 2124-
2125.
(26) Holland, P. L.; Rodgers, K. R.; Tolman, W. B. Angew. Chem., Int. Ed.
1999, 38, 1139-1142.
JA071704C
9
J. AM. CHEM. SOC. VOL. 129, NO. 22, 2007 6999