2498
D. A. Powell, G. Pelletier / Tetrahedron Letters 49 (2008) 2495–2498
Synthesis 2004, 1581–1584; (c) Rubin, M.; Gevorgyan, V. Org. Lett.
2001, 3, 2705–2707.
for valuable discussions and NOE NMR experiments, and
Dr. Jason Burch and Dr. Ernest Lee for their insights.
7. For several representative examples of transition metal-catalyzed
allylic and benzylic aminations with acetate or carboxylate electro-
philes, see: (a) Singh, O. M.; Han, H. J. Am. Chem. Soc. 2007, 129,
774–775; (b) Yokogi, M.; Kuwano, R. Tetrahedron Lett. 2007, 48,
6109–6112; (c) Liu, D.; Xie, F.; Zhang, W. J. Org. Chem. 2007, 72,
6992–6997; (d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921–2944.
8. For selected examples where protons have been implicated as active
catalysts in Lewis acid-mediated reactions, see: (a) Wabnitz, T. C.;
Yu, J.-Q.; Spencer, J. B. Chem. Eur. J. 2004, 10, 484–493; (b) Liu, P.
N.; Zhou, Z. Y.; Lau, C. P. Chem. Eur. J. 2007, 13, 8610–8619; (c)
Rosenfeld, D. C.; Shashank, S.; Takemiya, A.; Utsunomiya, M.;
Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Modern Amination Reaction; Ricci, A., Ed.; Wiley-VCH: Weinheim,
Germany, 2000.
2. (a) Reddy, C. R.; Madhavi, P. P.; Reddy, A. S. Tetrahedron Lett.
2007, 48, 7169–7172; (b) Guo, S.; Song, F.; Liu, Y. Synlett 2007, 964–
968; (c) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew.
Chem., Int. Ed. 2007, 46, 409–413; (d) Zhan, Z.-p.; Yu, J.-l.; Liu, H.-j.;
Cui, Y.-y.; Yang, R.-f.; Yang, W.-z.; Li, J.-p. J. Org. Chem. 2006, 71,
8298–8301; (e) Zhan, Z.-p.; Yang, W.-z.; Yang, R.-f.; Yu, J.-l.; Li,
J.-p.; Liu, H.-j. Chem. Commun. 2006, 3352–3354; (f) Terrasson, V.;
Marque, S.; Georgy, M.; Campagne, J.-M.; Prim, D. Adv. Synth.
Catal. 2006, 348, 2063–2067; (g) Noji, M.; Ohno, T.; Fuji, K.; Futaba,
N.; Tajima, H.; Ishii, K. J. Org. Chem. 2003, 68, 9340–9347; (h) Ohri,
R. V.; Radosevich, A. T.; Hrovat, K. J.; Musich, C.; Huang, D.;
Holman, T. R.; Toste, F. D. Org. Lett. 2005, 7, 2501–2504.
9. (a) Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311–314; (b) Sanz,
´
R.; Mart´ınez, A.; Miguel, D.; Alvarez-Gutie´rrez, J. M.; Rodr´ıguez, F.
Adv. Synth. Catal. 2006, 348, 1841–1845.
10. 2,6-Di-tert-butylpyridine is approximately 1 pKa unit less basic than
pyridine, but does not readily coordinate to metal ions due to the
bulky tert-butyl groups, see: Brown, H. C.; Kanner, B. J. Am. Chem.
Soc. 1966, 88, 986–992.
11. Yang, T.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2007, 129,
12070–12071.
12. It is unclear at this point why the copper triflate/t-BuOOAc-catalyzed
system gives higher yields than triflic acid alone. An oxidized copper
triflate-complex may be playing a role in buffering the available
concentration of triflic acid. It is known that larger concentrations of
Brønsted acids have a detrimental effect on similar reactions, see
Ref. 8a.
3. (a) Motokura, K.; Nakagiri, N.; Mizugaki, T.; Ebitani, K.; Kaneda,
K. J. Org. Chem. 2007, 72, 6006–6015; (b) Motokura, K.; Nakagiri,
N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K.
Org. Lett. 2006, 8, 4617–4620.
13. Strongly electron-deficient sulfonamides, such as 4-nitrobenzenesulf-
onamide, afforded low yields (<20%) of the amidation product.
4. For related examples where allylic, benzylic or propargylic alcohols
have been used as electrophiles with non-nitrogen-based nucleophiles,
see: (a) Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161–
5167; (b) Podder, S.; Choudhury, J.; Roy, S. J. Org. Chem. 2007, 72,
3129–3132; (c) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int.
Ed. 2006, 45, 793–796; (d) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.;
Beller, M. Angew. Chem., Int. Ed. 2005, 44, 3913–3917; (e) Nishiba-
yahi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai,
M.; Uemura, S. Chem. Eur. J. 2005, 11, 1433–1451; (f) Kaur, G.;
Kaushik, M.; Trehan, S. Tetrahedron Lett. 1997, 38, 2521–2524.
5. Powell, D. A.; Pelletier, G. Org. Lett. 2006, 8, 6031–6034.
6. For several other Lewis acid-catalyzed reactions of allylic or benzylic
acetates, see: (a) Chandrasekhar, S.; Reddy, C. R.; Chandrashekar,
G. Tetrahedron Lett. 2004, 45, 6481–6484; (b) Kim, S. H.; Shin, C.;
Pae, A. N.; Koh, H. Y.; Chang, M. H.; Chung, B. Y.; Cho, Y. S.
`
14. Ribiere, P.; Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2006,
106, 2249–2269.
15. The observed racemization could also be a result of the amidation
being reversible, see Ref. 2c.
16. Several Lewis and Brønsted acid-catalyzed aminations of alkenes with
anilines, carbamates and sulfonamides have been reported, see Ref. 8c
and (a) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2006, 128, 1611–1614; (b) Anderson, L. L.; Arnold, J.;
Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 14542–14543; (c) Li, Z.;
Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett.
2006, 8, 4175–4178; (d) Taylor, J. G.; Whittall, N.; Hii, K. K. Org.
Lett. 2006, 8, 3561–3564.
17. The formation of alkene intermediates is unlikely for the substrates
listed in Table 2, entries 10, 12–14.