Running title
Chin. J. Chem.
Mechanistic Insights into the Reduction of Carbon Dioxide with
Organocatalysts with Carbon-Centered Activity for CO2 Reduction
with Boranes. Chem. Commun. 2015, 51, 11293-11296; (i) Aloisi,
A.; Berthet, J.-C.; Genre, C.; Thuérya, P.; Cantat, T. Complexes of
the Tripodal Phosphine Ligands PhSi(XPPh2)3 (X = CH2, O):
Synthesis, Structure and Catalytic Activity in the Hydroboration of
CO2. Dalton Trans. 2016, 45, 14774-14788; (j) Murphy, L. J.;
Hollenhorst, H.; McDonald, R.; Ferguson, M.; Lumsden, M. D.;
Turculet, L. Selective Ni-Catalyzed Hydroboration of CO2 to the
Formaldehyde Level Enabled by New PSiP Ligation.
Organometallics. 2017, 36, 3709-3720; (k) Ramos, A.; Antiñolo, A.;
Carrillo-Hermosilla, F.; Fernández-Galán, R.; Rodríguez-Diéguez, A.;
García-Vivó, D. Carbodiimides as Catalysts for the Reduction of
CO2 with Boranes. Chem. Commun. 2018, 54, 4700-4703; (l)
Espinosa, M. R.; Charboneau, D. J.; Oliveira, A. G. d.; Hazari, N.
Controlling Selectivity in the Hydroboration of Carbon Dioxide to
the Formic Acid, Formaldehyde, and Methanol Oxidation Levels.
ACS Catal. 2019, 9, 301-314.
Silanes over N‐Heterocyclic Carbene Catalysts. ChemCatChem.
2013, 5, 1490-1496; (e) LeBlanc, F. A.; Piers, W. E.; Parvez, M.
Selective Hydrosilation of CO2 to a Bis(silylacetal) Using an Anilido
Bipyridyl‐Ligated Organoscandium Catalyst. Angew. Chem. Int.
Ed. 2014, 53, 789-792; (f) Courtemanche, M.-A.; Légaré,M.-A.;
Rochettea, É.; Fontaine, F.-G. Phosphazenes: Efficient
Organocatalysts for the Catalytic Hydrosilylation of Carbon Dioxide.
Chem. Commun. 2015, 51, 6858-6861; (g) Lu, Z.; Hausmann, H.;
Becker, S.; Wegner, H. A. Aromaticity as Stabilizing Element in the
Bidentate Activation for the Catalytic Reduction of Carbon Dioxide.
J. Am. Chem. Soc. 2015, 137, 5332-5335; (h) Metsanen, T. T.;
Oestreich,
M.
Temperature-Dependent
Chemoselective
Hydrosilylation of Carbon Dioxide to Formaldehyde or Methanol
Oxidation State. Organometallics. 2015, 34, 543-546; (i) Ríos, P.;
Curado, N.; López-Serrano, J.; Rodríguez, A. Selective Reduction of
Carbon Dioxide to Bis(silyl)acetal Catalyzed by a PBP-supported
Nickel Complex. Chem. Commun. 2016, 52, 2114-2117; (j) Bertini,
F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.;
Gonsalvi, L. Carbon Dioxide Reduction to Methanol Catalyzed by
Mn(I) PNP Pincer Complexes under Mild Reaction Conditions. ACS
Catal. 2018, 9, 632-639; (k) Feng, G.; Du, C.; Xiang, L.; Rosal, I. d.; Li,
G.; Leng, X.; Chen, E. Y.-X.; Maron, L.; Chen, Y. Side Arm Twist on
Zn-Catalyzed Hydrosilylative Reduction of CO2 to Formate and
Methanol Equivalents with High Selectivity and Activity. ACS Catal.
2018, 8, 4710-4718; (l) Chen, J.; McGraw, M.; Chen, E. Y.-X.
Diverse Catalytic Systems and Mechanistic Pathways for
Hydrosilylative Reduction of CO2. ChemSusChem. 2019, 12,
4543-4569; (m) Rauch, M.; Strater, Z.; Parkin, G. Selective
[5] (a) Frogneux, X.; Blondiaux, E.; Thuéry, P.; Cantat, T. Bridging
Amines with CO2: Organocatalyzed Reduction of CO2 to Aminals.
ACS Catal. 2015, 5, 3983-3987; (b) Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu,
H.-C.; He, L.-N. Betaine Catalysis for Hierarchical Reduction of CO2
with Amines and Hydrosilane To Form Formamides, Aminals, and
Methylamines. Angew. Chem. Int. Ed. 2017, 56, 7425-7429; (c) Xie,
C.; Song, J.; Wu, H.; Zhou, B.; Wu, C.; Han, B. Natural Product
Glycine Betaine as an Efficient Catalyst for Transformation of CO2
with Amines to Synthesize N-Substituted Compounds. ACS
Sustainable Chem. Eng. 2017, 5, 7086-7092; (d) Li, X.-Y.; Zheng,
S.-S.; Liu, X.-F.; Yang, Z.-W.; Tan, T.-Y.; Yu, A.; He, L.-N. Waste
Recycling: Ionic Liquid-Catalyzed 4-Electron Reduction of CO2 with
Amines and Polymethylhydrosiloxane Combining Experimental
and Theoretical Study. ACS Sustainable Chem. Eng. 2018, 6,
8130-8135; (e) Mu, Z.-J.; Ding, X.; Chen, Z.-Y.; Han, B.-H.
Zwitterionic Covalent Organic Frameworks as Catalysts for
Hierarchical Reduction of CO2 with Amine and Hydrosilane. ACS
Appl. Mater. Interfaces 2018, 10, 41350-41358.
Conversion of Carbon Dioxide to Formaldehyde via
a
Bis(silyl)acetal: Incorporation of Isotopically Labeled C1 Moieties
Derived from Carbon Dioxide into Organic Molecules. J. Am. Chem.
Soc. 2019, 141, 17754-17762; (n) Huang, W.; Roisnel, T.; Dorcet, V.;
Orione, C.; Kirillov, E. Reduction of CO2 by Hydrosilanes in the
Presence of Formamidinates of Group 13 and 12 Elements.
Organometallics. 2020, 39, 698-710.
[6] (a) Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.;
[4] (a) Bontemps, Sébastien. Boron-mediated Activation of Carbon
Dioxide. Coord. Chem. Rev. 2016, 308, 117-130; (b) Bontemps, S.;
Vendier, L.; Sabo-Etienne, S. Borane‐Mediated Carbon Dioxide
Reduction at Ruthenium: Formation of C1 and C2 Compounds.
Angew. Chem. Int. Ed. 2012, 51, 1671-1674; (c) Jin, G.; Werncke, C.
G.; Escudié, Y.; Sabo-Etienne, S.; Bontemps, S. Iron-Catalyzed
Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C
Bonds. J. Am. Chem. Soc. 2015, 137, 9563-9566; (d) Bontemps, S.;
Sabo-Etienne, S. Trapping Formaldehyde in the Homogeneous
Catalytic Reduction of Carbon Dioxide. Angew. Chem. Int. Ed. 2013,
52, 10253-10255; (e) Bontemps, S.; Vendier, L.; Sabo-Etienne, S.
Ruthenium-Catalyzed Reduction of Carbon Dioxide to
Formaldehyde. J. Am. Chem. Soc. 2014, 136, 4419-4425; (f) Gomes,
C. D. N.; Blondiaux, E.; Thuéry, P.; Cantat, T. Metal ‐Free
Reduction of CO2 with Hydroboranes: Two Efficient Pathways at
Play for the Reduction of CO2 to Methanol. Chem. Eur. J. 2014, 20,
7098-7106; (g) Courtemanche, M.-A.; Pulis, A. P.; Rochette, É.;
Légaré, M.-A.; Stephan, D. W.; Fontaine, F.-G. Intramolecular B/N
Frustrated Lewis Pairs and the Hydrogenation of Carbon Dioxide.
Chem. Commun. 2015, 51, 9797-9800; (h) Yang, Y.; Xu, M.; Song, D.
Klankermayer, J. Ruthenium ‐ Catalyzed Synthesis of
Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular
Hydrogen. Angew. Chem. Int. Ed. 2016, 55, 12266-12269; (b)
Schieweck, B. G.; Klankermayer, J. Tailor‐made Molecular Cobalt
Catalyst System for the Selective Transformation of Carbon
Dioxide to Dialkoxymethane Ethers. Angew. Chem. Int. Ed. 2017,
56, 10854-10857; (c) Siebert, M.; Seibicke, M.; Siegle, A. F.; Kräh,
S.; Trapp, O. Selective Ruthenium-Catalyzed Transformation of
Carbon Dioxide: An Alternative Approach toward Formaldehyde. J.
Am. Chem. Soc. 2019, 141, 334-341; (d) Seibicke, M.; Siebert, M.;
Siegle, A. F.; Gutenthaler, S. M.; Trapp, O. Application of
Hetero-Triphos Ligands in the Selective Ruthenium-Catalyzed
Transformation of Carbon Dioxide to the Formaldehyde Oxidation
State. Organometallics. 2019, 38, 1809-1814.
[7] Guo, Z.; Zhang, B.; Wei, X.; Xi, C. Reduction of CO2 into Methylene
Coupled with the Formation of C–S Bonds under NaBH4/I2 System.
Org. Lett. 2018, 20, 6678-6681.
[8] Zhu, D.-Y.; Fang, L.; Han, H.; Wang, Y.; Xia, J.-B. Reductive CO2
Fixation via Tandem C–C and C–N Bond Formation: Synthesis of
Spiro-Indolepyrrolidines. Org. Lett. 2017, 19, 4259-4262.
Chin. J. Chem. 2020, 38, XXX-XXX
© 2020 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.