J. Ma et al. / Inorganic Chemistry Communications 10 (2007) 762–766
765
Table 1
Suzuki reaction of aryl chloride with phenylboronic acid in neat water under air atomspherea
0.1mol% 2a/2b
ArCl + PhB(OH)2
Ar-Ph
Base (2 equiv)
water, 100˚C, TBAB
Entry
ArCl
Catalyst
Base
T (h)
Product
Yield (%)b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
a
40-Chloroacetophenone
40-Chloroacetophenone
40-Chloroacetophenone
40-Chloroacetophenone
40-Chloroacetophenone
40-Chloroacetophenone
40-Chloroacetophenone
4-Nitrochlorobenzene
3-Nitrochlorobenzene
4-Cyanochlorobenzene
Chlorobenzene
2a
2a
2a
2a
2a
2a
2b
2b
2b
2b
2b
2b
2b
2b
2b
2b
K2CO3
Na2CO3
KOH
NaOAc
K3PO4
KF
KF
KF
KF
KF
KF
KF
KF
KF
KF
KF
20
20
20
20
20
20
20
12
12
20
24
24
24
24
36
24
4-Acetylbiphenyl
4-Acetylbiphenyl
4-Acetylbiphenyl
4-Acetylbiphenyl
4-Acetylbiphenyl
4-Acetylbiphenyl
4-Acetylbiphenyl
4-Nitrobiphenyl
3-Nitrobiphenyl
4-Cyanobiphenyl
Biphenyl
4-Methylbiphenyl
4-Methoxylbiphenyl
2-Phenylpyridine
4-Methoxylbiphenyl
4-Methoxylbiphenyl
65
58
40
73
67
82
88
97
78
89
51
34
22
43
37
41c
4-Chlorotoluene
4-Chloroanisole
2-Chloropyridine
4-Chloroanisole
4-Chloroanisole
Reaction conditions: 1 equiv. of ArCl, 1.5 equiv. of PhB(OH)2, 2 equiv. of base, 0.5 equiv. of TBAB, 0.1% equiv. of catalyst, water, 100 ꢁC, under air
atmosphere.
b
Isolated yields, based on ArX, average of two runs.
0.5% equiv. of catalyst.
c
(b) B. Coronils,W.A. Herrmann(Eds.),AqueousphaseOrganometallic
Catalysis, Concepts and Applications, Wiley-VCH, Weinheim, 1998;
(c) C.-J. Li, T.-H. Chen, Organic Reactions in Aqueous Media, Klewer
Academic Publishers, Dordrecht, 1997.
activity in the Suzuki reaction of activated aryl chlorides
with phenylboronic acid in neat water under air atmo-
sphere. Further studies using these compounds in palla-
dium-catalyzed reactions are currently underway.
[3] (a) W.-Y. Wu, S.-N. Chen, F.Y. Tsai, Tetrahedron Lett. 47 (2006)
9267;
(b) M. Lysen, K. Koehler, Synlett (2005) 1671;
Acknowledgements
(c) R.B. Bedford, M.E. Blake, C.P. Butts, D. Holder, Chem.
Commun. (2003) 466;
(d) T. Brendgen, M. Frank, J. Schatz, Eur. J. Org. Chem. (2006) 2378.
[4] (a) T. Arai, T. Mizukami, N. Yokoyama, D. Nakazato, A. Yanagis-
awa, Synlett (2005) 2670;
We are grateful to the National Natural Science Foun-
dation of China (Project 20472074), the Innovation Fund
for Outstanding Scholar of Henan Province (Project
0621001100), Chinese Education Ministry and Personnel
Ministry Science Foundation for Chinese Oversea Scholar
for the financial support to this research.
(b) N. Halland, R.G. Hazell, K.A. Jorgensen, J. Org. Chem. 67 (2002)
8331;
(c) A. Bastero, C. Claver, A. Ruiz, S. Castillon, E. Daura, C. Bo, E.
Zangrando, Chem. Eur. J. 10 (2004) 3747;
(d) A. Bastero, A. Ruiz, C. Claver, B. Milani, E. Zangrando,
Organometallics 21 (2002) 5820;
Appendix A. Supplementary material
(e) A. Bastero, A. Ruiz, C. Claver, S. Castillon, Eur. J. Inorg. Chem.
12 (2001) 3009;
(f) F. Menges, M. Neuburger, A. Pfaltz, Org. Lett. 4 (2002) 4713;
(g) E. Guiu, C. Claver, J. Benet-Buchholz, S. Castillon, Tetrahedron–
Asymmetry 15 (2004) 3365;
Supplementary data associated with this article can be
(h) C.A. Busacca, D. Grossbach, R.C. So, E.M. O’Brien, E.M.
Spinelli, Org. Lett. 5 (2003) 595.
References
[5] (a) R. Peters, Z.-Q. Xin, D.F. Fischer, W.B. Schweizer, Organomet-
allics 25 (2006) 2917;
(b) M.E. Weiss, D.F. Fischer, Z.-Q. Xin, S. Jautze, W.B. Schweizer,
R. Peters, Angew. Chem. Int. Ed. 45 (2006) 5694.
[6] J. Ma, X.-L. Cui, B. Zhang, M.-P. Song, Y.-J. Wu, Tetrahedron
[1] (a) A. Suzuki, Pure Appl. Chem. 63 (1991) 419;
(b) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457;
(c) H. Li, Y.-J. Wu, W.-B. Wei, J. Organomet. Chem. 26 (2006) 5688;
(d) C. Xu, J.-F. Gong, S.-F. Yue, Y. Zhu, Y.-J. Wu, Dalton Trans. 39
(2006) 4730;
[7] Characterization data for 2a: yellow solid. Yield: 71%. mp 192-193 ꢁC.
Calcd for C39H44ClFeN2PPd: C 56.74%, H 4.15%, N 4.27%; Found:
C 56.97%, H 4.03%, N 4.46%. IR (KBr)/cmꢀ1: 3054, 2923, 2853,
1560, 1435, 1283, 1097, 1050, 999, 816, 747, 696. 1H NMR (CDCl3,
ppm): d = 7.81 ꢀ 7.77 (m, 6H, ArH), 7.40-7.38 (m, 9H, ArH), 4.37 (s,
1H, C5H3), 3.97 (m, 3H, C5H3 and C@NCH2), 3.84 (s, 5H, C5H5),
3.66 (m, 2H, NCH2C7H15), 3.36 (m, 2H, NCH2), 3.25 (s, 1H, C5H3),
1.68 (m, 2H, CH2C6H13), 1.34 (m, 10H, (CH2)5), 0.89 (m, 3H, CH3).
(e) J.-F. Gong, G.-F. Liu, Y. Zhu, C.-X. Du, M.-P. Song, Y.-J. Wu,
Gaodeng Xuexiao Huaxue XueBao 7 (2006) 1266;
(f) J.-F. Gong, G.-Y. Liu, C.-X. Du, Y. Zhu, Y.-J. Wu, J. Organomet.
Chem. 17 (2006) 3963;
(g) Y.-J. Wu, L.-R. Yang, J.-L. Zhang, M. Wang, L. Zhao, M.-P.
Song, J.-F. Gong, Arkivoc 9 (2004) 111.
[2] (a) A. Lubineau, J. Auge, in: P. Knochel (Ed.), Modern Solvents in
Organic Synthesis, Springer, Berlin, 1999;