2492 J ournal of Medicinal Chemistry, 2000, Vol. 43, No. 13
Communications to the Editor
(6) Wong, O. S.; Sternson, L. A.; Schowen, R. L. Reaction of
o-Phthalaldehyde with Alanine and Thiols: kinetics and mech-
anism. J . Am. Chem. Soc. 1985, 107, 6421-6422.
(7) (a) Simmons, S. S., J r.; J ohnson, D. F. The Structure of the
Fluorescent Adduct Formed in the Reaction of o-Phthalaldehyde
and Thiols with Amines. J . Am. Chem. Soc. 1976, 98, 7098-
7099. (b) Simmons, S. S., J r.; J ohnson, D. F. Reaction of
o-Phthalaldehyde and Thiols with Primary Amines: Fluores-
cence Properties of 1-Alkyl (and Aryl)thio-2-Alkylisoindoles.
Anal. Biochem. 1978, 90, 705-725.
(8) Garcia Alvarez-Coque, M. C.; Medina Hernandez, M. J .; Villan-
ueva Camanas, R. M.; Mongay Fernandez, C. Formation and
Instability of o-Phthalaldehyde Derivatives of Amino Acids.
Anal. Biochem. 1989, 178, 1-7.
(9) (a) Fekkes, D. State-of-The-Art of High-Performance Liquid
Chromatographic Analysis of Amino Acids in Physiological
Sample. J . Chromatogr., B: Biomed. Sci. Appl. 1996, 682, 3-22.
(b) Lee, K. S.; Drescher, D. G. Fluorometric Amino-Acid Analysis
with o-Phthalaldehyde (OPA). Int. J . Biochem. 1978, 9, 457-
467.
(10) (a) Pandey, A.; Sheikh, S.; Katiyar, S. S. Identification of
Cysteine and Lysine Residues Present at the Active Site of Beef
Liver Glutamate Dehydrogenase by o-Phthalaldehyde. Biochim.
Biophys. Acta 1996, 1293, 122-128. (b) Blaner, W. S.; Churchich,
J . Succinic Semialdehyde Dehydrogenase. J . Biol. Chem. 1979,
254, 1794-1798. (c) Puri, R. N.; Bhatnagar, D.; Roskoski, R.,
J r. Inactivation of Yeast Hexokinase by o-Phthalaldehyde:
Evidence for the Presence of a Cysteine and a Lysine at or near
the Active Site. Biochim. Biophys. Acta 1988, 957, 34-46. (d)
Giovannini, P. P.; Rippa, M.; Dallocchio, F.; Tetaud, M.; Barrett,
M. P.; Hanau, S. The Cross-Linking by o-Phthalaldehyde of Two
Amino Acid Residues at the Active Site of 6-Phosphogluconate
Dehydrogenase. Biochem. Mol. Biol. Int. 1997, 43, 153-160. (e)
Matteucci, G.; Lanzara, V.; Ferrari, C.; Hanau, S.; Bergamini,
C. M. Active Site of Erythrocyte Transglutaminase by o-
Phthalaldehyde. Biol. Chem. 1998, 379, 921-924.
F igu r e 4. Representative flow cytometric analysis of fluores-
cent opioid labeling of CHO cells. Untransfected CHO cells
(-MOR) or CHO cells transfected with µ opioid receptor
(+MOR) were incubated with (+2) or without (-2) compound
2 (1 µM) at 25 °C for 1 min. The median fluorescence intensity
values for each curve are as follows: green (2.44), blue (3.34),
red (4.14).
progress to determine which neighboring amino acid
residues (lysine and cysteine) are involved in the
covalent association of 2 with opioid receptors. Such
information should be useful in exploring the recogni-
tion of ligands by opioid receptors and will provide
additional constraints for molecular modeling studies
of opioid receptors.
(11) Sayre, L. M.; Portoghese, P. S. Stereospecific Synthesis of the
6R- and 6â-Amino Derivatives of Naltrexone and Oxymorphone.
J . Org. Chem. 1980, 16, 3366-3368.
Ack n ow led gm en t. We thank Michael Powers and
J anet Peller for capable technical assistance. We also
thank Dr. Martin Wessendorf for helpful discussions
and Dr. Germana Paterlini for the fluorescence experi-
ments. This work was supported by the National
Institute on Drug Abuse.
(12) Amano, T.; Sakano, T. Studies on the Determination Methods
with Polyaldehydes. VIII. Fluorescence of 2-phenyl-5,6-substi-
tuted Phthalimidine Derivatives. Yakugaku Zasshi 1968, 88,
247-253.
(13) The hydration of OPTA has been previously documented. Thus,
at room temperature, water reacts reversibly with OPTA to
produce a hydrate (1,3-dihydroxyphthalan). See: McDonald, R.
S.; Martin, E. The Kinetics of the Hydration of Phthalaldehyde.
Can. J . Chem. 1979, 57, 506-512.
Refer en ces
(14) The apparent Ki reflects both the reversible and irreversible
binding components.
(1) Takemori, A. E.; Portoghese, P. S. Affinity Labels for Opioid
Receptors. Annu. Rev. Pharmacol. Toxicol. 1985, 25, 193-223.
(2) Liu-Chen, L.-Y.; Chen, C.; Phillips, C. A. â-[3H]Funaltrexamine-
Labeled µ-Opioid Receptors: Species Variations in Molecular
Mass and Glycosylation by Complex-Type, N-Linked Oligosac-
charides. Mol. Pharmacol. 1993, 44, 749-756.
(15) Rang, H. P. Stimulant Actions of Volatile Anaesthetics on
Smooth Muscle. Br. J . Pharmacol. 1964, 22, 356-365.
(16) Morphine IC50 (after 20 min incubation of the GPI with 2 at 20
nM followed by 4 × 10 washes) divided by control morphine IC50
in the same preparation.
(17) Ward, S. J .; Portoghese, P. S.; Takemori, A. E. Pharmacological
Characterization in Vivo of the Novel Opiate, â-Funaltrexamine.
J . Pharmacol. Exp. Ther. 1982, 220, 494-498.
(18) Preliminary studies indicated that 2 is nonfluorescent. Further-
more, the optimal emission and absorption wavelength values
used in the flow cytometric experiments are in the same range
of those reported for the isoindole fluorophore.7b,10
(19) Prather, P. L.; Mcginn, T. M.; Claude, P. A.; Liu-Chen, L.-Y.;
Loh, H. H.; Law, P. Y. Properties of a Kappa-Opioid Receptor
Expressed in CHO Cells-Interaction with Multiple G-Proteins
is not Specific for any Individual G-Alpha Subunit and is Similar
to that of other Opioid Receptors. Mol. Brain Res. 1995, 29, 336-
346.
(3) Chen, C.; Xue, J .-C.; Zhu, J .; Chen, Y.-W.; Kunapuli, S.; de Riel,
J . K.; Yu, L.; Liu-Chen, L.-Y. Characterization of Irreversible
Binding of â-Funaltrexamine to the Cloned Rat
Receptor. J . Biol. Chem. 1995, 270, 17866-17870.
µ Opioid
(4) (a) Portoghese, P. S.; Larson, D. L.; Sayre, L. M.; Fries, D. S.;
Takemori, A. E. A Novel Opioid Receptor Site Directed Alky-
lating Agent with Irreversible Narcotic Antagonistic and Revers-
ible Agonistic Activities. J . Med. Chem. 1980, 23, 233-234. (b)
Takemori, A. E.; Larson, D. L.; Portoghese, P. S. The Irreversible
Narcotic Antagonist and Reversible Agonistic Properties of the
Fumarate Methyl Ester Derivative of Naltrexone. Eur. J .
Pharmacol. 1981, 70, 445-451. (c) â-FNA binds to brain µ, κ,
and δ receptors with IC50 values of 2.2, 14, and 78 nM,
respectively (Tam, S. W.; Liu-Chen, L.-Y. Reversible and Ir-
reversible Binding of â-Funaltrexamine to Mu, Delta and Kappa
Opioid Receptors in Guinea Pig Brain Membranes. J . Pharma-
col. Exp. Ther. 1986, 239, 351-357).
(20) Haley, T. J .; McCormack, W. G. Pharmacological Effects Pro-
duced by Intracerebral Injection of Drugs in the Conscious
Mouse. Br. J . Pharmacol. 1957, 12, 12-15.
(5) Chen, C.; Yin, J .; de Riel, J . K.; DesJ arlais, R. L.; Raveglia, L.
F.; Zhu, J .; Liu-Chen, L.-Y. Determination of the Amino Acid
Residue Involved in [3H]â-Funaltrexamine Covalent Binding in
the Cloned Rat µ Opioid Receptor. J . Biol. Chem. 1996, 35,
21422-21429.
(21) Hayashi, G.; Takemori, A. E. The Type of Analgesic-Receptor
Interaction involved in Certain Analgesic Assays. Eur. J . Phar-
macol. 1971, 16, 63-66.
J M000138S