2032
M. Royo et al. / Tetrahedron Letters 43 (2002) 2029–2032
2. Seebach, D.; Matthews, J. L. Chem. Commun. 1997,
2015–2022.
Carpino, L. A.; Kates, S. A. Tetrahedron Lett. 1997, 38,
4853–4856.
3. (a) Appella, D. H.; Barchi, J. J., Jr.; Durell, S. R.;
Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 2309–2310;
(b) Barchi, J. J., Jr.; Huang, X.; Appella, D. H.; Chris-
tianson, L. A.; Durell, S. R.; Gellman, S. H. J. Am.
Chem. Soc. 2000, 122, 2711–2718.
4. Seebach, D.; Matthews, J. L.; Meden, A.; Wessel, T.;
Baerlocher, C.; McCusker, L. B. Helv. Chim. Acta 1997,
80, 173–182.
5. For a review on cyclic peptides, see: Rovero, P. In
Practical Solid-Phase Synthesis: A Book Companion;
Kates, S. A.; Albericio, F., Eds.; Marcel Dekker: New
York, 2000; pp. 331–364.
6. For reviews on solid-phase chemistry, see: (a) Solid-Sup-
ported Combinatorial and Parallel Synthesis of Small-
Molecular-Weight Compound Libraries; Obrecht, D.;
Villalgordo, J. M., Eds.; Pergamon, 1998; (b) Combinato-
rial Chemistry: A Practical Approach; Bannwarth, W.;
Felder, E.; Eds.; Wiley-VCH: Weinheim, 2000; (c) Practi-
cal Solid-Phase Synthesis: A Book Companion; Kates, S.
A.; Albericio, F., Eds.; Marcel Dekker: New York, 2000;
(d) Seneci, P. Solid-Phase Synthesis and Combinatorial
Technologies; John Wiley & Sons: New York, 2001.
7. An orthogonal system is defined as a set of completely
independent classes of protecing groups, such that each
class of group can be removed in any order and in the
presence of all other classes (Barany, G.; Albericio, F. J.
Am. Chem. Soc. 1985, 107, 4936–4942, and references
cited therein).
17. Thieriet, N.; Alsina, J.; Giralt, E.; Guibe´, F.; Albericio,
F. Tetrahedron Lett. 1997, 38, 7275–7278.
18. If the Alloc groups are removed after the incorporation
of the Dapa derivative and before the removal of the
Fmoc group, different building blocks could be incorpo-
rated at each Dapa residue. Furthermore, the same
results can be achieved if the Dapa residues are incorpo-
rated with different Na protection, for instance Alloc and
methyltrityl (Mtt), which is also compatible with this
scheme.
19. (a) Rouslahti, E.; Pierschbacher, M. D. Science 1987,
238, 491–497; (b) Brooks, P. C.; Clark, C. F.; Cheresh, D.
A. Science 1994, 264, 569–571; (c) Cox, D.; Aoki, T.;
Seri, J.; Motoyama, Y.; Yoshida, K. Med. Res. Rev.
1994, 14, 194–195.
20. Solid-phase elongation of all linear peptides took place
with essentially quantitative yields. All cyclic peptides
were characterized by HPLC and MALDI-TOF-MS. c[
Dapa(Alloc)-bAla- -Dapa(Alloc)-bAla]: HPLC (78%
purity); MS calcd for C20H30N6O8 482.21, found 483.96
[M+H]+, 506.34 [M+Na]+, 522.32 [M+K]+; c[
-Dapa-
(PhAc)-bAla- -Dapa(PhAc)-bAla]: HPLC (72% purity);
MS calcd for C28H34N6O6 550.25, found 552.24 [M+H]+,
574.26 [M+Na]+, 590.24 [M+K]+; c[
-Dapa(RGD)-bAla-
-Dapa(RGD)-bAla]: HPLC (65% purity). MS calcd for
C36H62N18O14 970.47, found 973.06 [M+H]+, 995.06 [M+
Na]+, 1011.06 [M+K]+. c[
-Dapa-bAla- -Dapa-bAla]:
L-
L
L
L
L
L
L
L
HPLC (70% purity). MS calcd for C12H22N6O4 314.17,
found 315 [M+H]+, 338 [M+Na]+, 353 [M+K]+; c(bAla)4:
HPLC (73% purity). MS calcd for C12H20N4O4 284.15,
found 284 [M+H]+, 307 [M+Na]+, 323 [M+K]+.
8. For a review of orthogonal protecting groups, see:
Albericio, F. Biopolymers (Peptide Sci.) 2000, 55, 123–
139.
21. Barlos, K.; Gatos, D.; Scha¨fer, W. Angew. Chem., Int.
Ed. Engl. 1991, 30, 590–593.
22. Even worse results were obtained when cyclization of the
9. (a) Jensen, K. J.; Alsina, J.; Songster, M. F.; Va´gner, J.;
Albericio, F.; Barany, G. J. Am. Chem. Soc. 1998, 120,
5441–5452; (b) Alsina, J.; Jensen, K. J.; Albericio, F.;
Barany, G. Chem. Eur. J. 1999, 5, 2787–2795.
10. Carpino, L. A.; Han, G. Y. J. Org. Chem. 1972, 37,
3404–3405.
11. For reviews on allyl-based protecting groups, see: Guibe´,
F. Tetrahedron 1997, 53, 13509–13556 and 1998, 54,
2967–3042.
12. Hocker, M. D.; Caldwell, C. G.; Macsata, R. W.; Lyttle,
M. H. Peptide Res. 1995, 8, 310–315.
13. Romanovskis, P.; Spatola, A. F. J. Peptide Res. 1998, 52,
356–374.
14. Subirana and co-workers were the first to show that
b-amino acid polymers derived from aspartic acid adopt
helical structures. Ferna´ndez-Sant´ın, J. M.; Aymam´ı, J.;
Rodr´ıguez-Gala´n, A.; Mun˜oz-Guerra, S.; Subirana, J. A.
Nature 1984, 311, 53–54. Dapa is the aminated analogue
of Asp.
15. Carpino, L. A.; El-Faham, A.; Minor, C. A.; Albericio,
F. J. Chem. Soc., Chem. Commun. 1994, 201–203.
16. Albericio, F.; Cases, M.; Alsina, J.; Triolo, S. A.;
precursor
H-L-Dapa(Alloc)-ßAla-L-Dapa(Alloc)-ßAla-
OH was attempted.
23. b-Alanine pNb ester hydrochloride was prepared by reac-
tion of Boc-bAla-OH (1 equiv.) with p-nitrobenzyl alco-
hol (1 equiv.) in the presence of DIEA (1 equiv.) in
CH2Cl2 for 16 h at 25°C. The residue was suspended in
EtOAc, washed with 10% aqueous Na2CO3, 0.1N
aqueous HCl, brine, dried (MgSO4), and concentrated in
vacuo. The Boc-bAla-OpNb intermediate, a white solid,
was dissolved in 4N HCl/dioxane and stirred at 25°C for
1 h. The homogeneous reaction mixture was concentrated
in vacuo and washed with Et2O to provide the product as
a white solid (81% overall yield).
24. When ClꢀTrt-resin of loading superior to 1 mmol/g is
used, a limited incorporation of the first amino acid is
advisable to avoid the formation of deletion peptides
arising from interchain aggregation. Chiva, C.; Vilaseca,
M.; Giralt, E.; Albericio, F. J. Peptide Sci. 1999, 5,
131–140.