Early examples of alkyne oxidations used superstoichiometric
amounts of chromium(VI) complexes to afford low yields of
ynones.7 Muzart provided the first example of catalytic prop-
argylic oxidation by using a bis-tributyltin oxide dichromi-
um(VI) complex in conjunction with t-BuOOH.8 Recent pro-
pargylic oxidations have made use of N-hydroxyphthalimide
or t-BuOOH with transition metal catalysts [Cr (VI), Cu(II),
Fe(II) and Fe(IV)].9 However, few of these processes show
exceptional selectivity, efficiency, and sustainability.
Propargylic Oxidations Catalyzed by Dirhodium
Caprolactamate in Water: Efficient Access to
r,ꢀ-Acetylenic Ketones
Emily C. McLaughlin and Michael P. Doyle*
Department of Chemistry and Biochemistry, UniVersity of
Maryland, College Park, Maryland 20742
The utility of R,ꢀ-acetylenic ketones (ynones) has been
reported in the synthesis of biologically relevant molecules such
as C-nucleosides,10 antitumor agents,11 and insect pheromones.12
Ynones are also versatile synthons in the preparation of chiral
propargylic alcohols,13 γ-acetylenic enones,14 Diels-Alder
adducts,15 and a variety of heterocyclic compounds.16 Tradition-
ally, they are prepared in two steps by terminal acetylide anion
addition to aldehydes, followed by oxidation of the resultant
alcohol.17 Ynones can also be prepared in a single step by
stoichiometric acylation of organometallic alkyne equivalents18
or catalytic metal-mediated coupling,19 although many of these
one-step methods are limited to only aryl-substituted substrates.
ReceiVed February 15, 2008
Dirhodium(II) caprolactamate (1, Rh2(cap)4) with 70% w/w
aqueous tert-butyl hydroperoxide (T-HYDRO) is a highly
effective catalytic oxidation protocol for the selective C-H
oxidation of alkynes to propargylic ketones. The oxidation
occurs readily in aqueous solvent under mild conditions with
an inexpensive and easily handled oxidant. R,ꢀ-Acetylenic
carbonyl compounds are formed in up to 80% isolated yield.
We have found that oxidation of 4-octyne (2) with 1.0 mol
% of 1 and T-HYDRO in a chlorinated hydrocarbon solvent
(1,2-dichloroethane, DCE) at 40 °C afforded ynone 3 in 86%
yield. However, the same oxidation in water furnished 3 more
rapidly and in higher yield (89%, Scheme 1).20 Moreover, water
acted as a heat sink for the exothermicity of dirhodium(II)-
(7) (a) Shaw, J. E.; Sherry, J. J. Tetrahedron Lett. 1971, 4379. (b) Sheats,
W. B.; Olli, L. K.; Stout, R.; Lundeen, J. T.; Justus, R.; Nigh, W. G. J. Org.
Chem. 1979, 44, 4075.
Mild and selective hydrocarbon oxidation methods are an
invaluable tool in synthetic organic chemistry. Installing oxygen
into a molecule (oxyfunctionalization) is an important form of
oxidation for which increasing degrees of selectivity, efficiency,
and sustainability are essential.1 For these reasons, transition-
metal-mediated oxyfunctionalization has been a long-standing
focus in both academic and industrial research.2
Recently, we have reported that dirhodium caprolactamate
1, Rh2(cap)4, with tert-BuOOH (TBHP) can effectively catalyze
allylic,3 benzylic,4 and amine oxidations.5 Initially we thought
anhydrous TBHP in decane was necessary to avoid hydrolysis
of ligands from the dirhodium catalysts such as 1. However,
we recently found that that Rh2(cap)4 is compatible with 70%
aqueous TBHP (T-HYDRO) in allylic oxidations.6 In efforts
to continue improvements in dirhodium oxidation technology,
we have found that water can replace organic solvent. Herein,
we report the oxidation of alkynes to R,ꢀ-acetylenic ketones
by T-HYDRO (70% w/w aqueous t-BuOOH), catalyzed by 1
with water as the reaction solvent.
(8) (a) Muzart, J. New J. Chem. 1989, 13, 9. (b) Muzart, J. Synth. Commun.
1989, 19, 2061. (c) Muzart, J.; Piva, O. Tetrahedron Lett. 1988, 29, 2321.
(9) For all other methods of propargylic oxidation, see: (a) Ajjou, A. N.;
Ferguson, G. Tetrahedron Lett. 2006, 47, 3719. (b) Ryu, J. Y.; Heo, S.; Park,
P.; Nam, W.; Kim, J. Inorg. Chem. Commun. 2004, 7, 534. (c) Ferguson, G.;
Ajjou, A. N. Tetrahedron Lett. 2003, 44, 9139. (d) Perollier, C. P.; Sorokin,
A. B. Chem. Commun. 2002, 1548. (e) Li, P.; Fong, W. M.; Chao, L. C. F.;
Fung, S. H. C.; Williams, I. D. J. Org. Chem. 2001, 66, 4087. (f) Sakaguchi, S.;
Takase, T.; Iwahama, T.; Ishii, Y. Chem. Commun. 1998, 2037.
(10) Adlington, R. M.; Baldwin, J. E.; Pritchard, G. J.; Spencer, K. C.
Tetrahedron Lett. 2000, 41, 575.
(11) Kundu, N. G.; Mahanty, J. S.; Spears, C. P. Bioorg. Med. Chem. Lett.
1996, 6, 1497.
(12) Clennan, E. L.; Heah, P. C. J. Org. Chem. 1981, 46, 4107.
(13) For recent examples, see: (a) Baker, J. R.; Thominet, O.; Britton, H.;
Caddick, S. Org. Lett. 2007, 9, 45. (b) Lou, S.; Moquist, P. N.; Schaus, S. E.
J. Am. Chem. Soc. 2006, 128, 12660.
(14) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. J. Am.
Chem. Soc. 1997, 119, 698.
(15) For representative examples of Diels-Alder reactions with ynones, see:
(a) Winkler, J. D.; Holland, J. M.; Peters, D. A. J. Org. Chem. 1996, 61, 9074.
(b) Feng, X. Q.; Olsen, R. K. J. Org. Chem. 1992, 57, 5811. (c) Kraus, G. A.;
Taschner, M. J J. Am. Chem. Soc. 1980, 102, 1974.
(16) For examples, see: (a) Korivi, R. P.; Cheng, C. H. J. Org. Chem. 2006,
71, 7079. (b) Xiong, X.; Bagley, M. C.; Chapaneri, K. Tetrahedron Lett. 2004,
45, 6121. (c) Adlington, R. M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J.;
Tang, L. T. J. Chem. Soc., Perkin Trans. 1 2000, 2311. (d) Hwu, J. R.; Patel,
H. V.; Lin, R. J.; Gray, M. O. J. Org. Chem. 1994, 59, 1577.
(17) For recent examples, see: (a) Waddell, M. K.; Bekele, T.; Lipton, M. A.
J. Org. Chem. 2006, 71, 8372. (b) Wang, C.; Forsyth, C. J. Org. Lett. 2006, 8,
2997. (c) Zhang, X. X.; Sarkar, S.; Larock, R. C. J. Org. Chem. 2006, 71, 236.
(18) Yamaguchi, M.; Shibato, K.; Fujiwara, S.; Hirao, I. Synthesis 1986, 421.
(19) For examples, see: (a) Alonso, D. A.; Na´jera, C.; Pacheco, M. C. J.
Org. Chem. 2004, 69, 1615. (b) Chowdhury, C.; Kundu, N. G. Tetrahedron
1999, 55, 7011.
(1) (a) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 1977. (b) Li,
C.-J. Chen, L. Chem. Soc. ReV. 2006, 5, 68.
(2) For metal-mediated oxidations, see: Modern Oxidation Methods; Ba¨ckvall,
J.-E., Ed.; Wiley: Weinheim, 2004.
(3) Catino, A. J.; Forslund, R. E.; Doyle, M. P. J. Am. Chem. Soc. 2004,
126, 13622.
(4) Catino, A. J.; Nichols, J. M.; Choi, H. J.; Gottipamula, S.; Doyle, M. P.
Org. Lett. 2005, 7, 5167.
(5) Choi, H.; Doyle, M. P. Chem. Commun. 2007, 745.
(6) Choi, H.; Doyle, M. P. Org. Lett. 2007, 9, 5349.
(20) Product formation was monitored by gas chromatography.
10.1021/jo800382p CCC: $40.75
Published on Web 05/01/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4317–4319 4317